Volume 65 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
XU Tao, ZHAO Yaru. Design and Damage-Resistant Performance Study of 10 kW Electrical Substitute Laser Power Meter Absorber[J]. Metrology Science and Technology, 2021, 65(9): 8-12, 55. doi: 10.12338/j.issn.2096-9015.2020.9060
Citation: XU Tao, ZHAO Yaru. Design and Damage-Resistant Performance Study of 10 kW Electrical Substitute Laser Power Meter Absorber[J]. Metrology Science and Technology, 2021, 65(9): 8-12, 55. doi: 10.12338/j.issn.2096-9015.2020.9060

Design and Damage-Resistant Performance Study of 10 kW Electrical Substitute Laser Power Meter Absorber

doi: 10.12338/j.issn.2096-9015.2020.9060
  • Available Online: 2021-04-28
  • Publish Date: 2021-09-01
  • The absolute measurement of laser power mainly adopts an electrical calibration laser power measurement system, which traces the laser power to the voltage and standard resistance reference to achieve the value realization. For absolute measurement of high power lasers of 10,000 watts level, the damage resistance of the absorber is the key to the measurement system. In this paper, the design and damage-resistant performance of an absorber of 10 kW electrical substitute laser power meter were studied, and the damage-resistant laser absorber cavity was designed and developed based on the reflective beam expander structure and water cooling method. The heat transfer characteristics of the absorber under different laser power, spot size, and cooling water flow rates were studied using numerical heat transfer analysis. The results show that the temperature rise of the laser absorption surface is well controlled, and the upper limit of the power measurement of the absorber reaches 15 kW, which is mainly limited by the vaporization of cooling water caused by the surface temperature rise of the water cooling channel. The results of the numerical analysis are essential for the clarification of the damage resistance, the setting of the measurement system parameters, and the optimization of the absorber structure. Under the condition of a high-power laser, the electrical calibration measurement system with the absorber was tested. The maximum measurement power reached 14.3 kW, and the measurement data remained stable at different powers without damage to the absorber.
  • loading
  • [1]
    Stephens M, Yung C S, Tomlin N A, et al. Room temperature laser power standard using a microfabricated electrical substitution bolometer[J]. Rev. Sci. Instrum., 2021, 92(2): 025107, 1-13.
    [2]
    Kuck S, Brandt F, Kremling H A, et al. Absolute measurement of F2-laser power at 157 nm[J]. Applied Optics, 2006, 45(14): 3325-30. doi: 10.1364/AO.45.003325
    [3]
    徐涛, 于靖, 邓玉强, 等. 准分子激光功率标准探测器的研制[J]. 应用光学, 2006, 33(4): 999-1002.
    [4]
    Endo M, Inoue T. A double calorimeter for 10-W level Laser power measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(2): 688-691.
    [5]
    Lehman J H, Vayshenker I, Livigni D J, et al. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations[J]. Journal of Research of the National Institute of Standards & Technology, 2004, 109(2): 291-298.
    [6]
    Kueck S, Liegmann K, Moestl K, et al. Laser radiometry for UV lasers at 193 nm[C]. Exarhos G. Proc. SPIE 4932. Boulder: SPIE, 2003: 645-655.
    [7]
    Dowell M L, Cromer C L, Jones R D, et al. New developments in deep ultraviolet laser metrology for photolithography[C]. David G S. AIP Conference Proceedings 550. Gaithersburg: American Institute of Physics, 2001: 361-363.
    [8]
    李英娜, 于靖. 激光中功率基准装置的改造[J]. 现代测量与实验室管理, 2000, 8(2): 15-19.
    [9]
    于靖. 瓦级激光功率基准器的研究[J]. 现代计量测试, 1998(1): 38-42.
    [10]
    Zhang Z M, Livigni D J, Jones R D, et al. Thermal modeling and analysis of laser calorimeters[J]. Journal of Thermophysics & Heat Transfer, 1996, 10(2): 350-356.
    [11]
    于靖, 李英娜. 电校准激光中功率计的设计和量值稳定性考察[J]. 现代计量测试, 1996(5): 36-39.
    [12]
    Da N G S, Miron N. Theoretical model for the heat diffusion in an electrically calibrated laser power meter[J]. SPIE, 1995, 2550: 56-64.
    [13]
    Suzuki Y, Murata A, Arangi M, et al. Calorimeter with compensative absorber for measuring microwatt level optical power[J]. IEEE, 1991, 40(2): 219-221.
    [14]
    Williams P, Hadler J, Cromer C, et al. Flowing water optical power meter for primary-standard multi-kilowatt laser power measurements[J]. Metrologia, 2018, 55(3): 427-436. doi: 10.1088/1681-7575/aaae78
    [15]
    Soni R K, Mandloie V K, Pote M B, et al. Spinning cone water film power meter for high-power CO2 lasers[J]. Optics and Laser Technology, 2007, 39(1): 196-201. doi: 10.1016/j.optlastec.2005.03.003
    [16]
    Brandl V, Haensel k, Klos M, et al. Calibration of laser power meters for high-power applications[C]. Exarhos G. Proc. SPIE 4932. Boulder: SPIE, 2003: 600-607.
    [17]
    Plass W, Voss A, Schmid N, et al. Calibrated CO2 – Laser Power Calorimeter[C]. Michel Morin, Adolf Giesen. Proc. SPIE 2870. Quebec: SPIE, 1996: 298-303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (788) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return