Volume 65 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XU Tao, ZHAO Yaru. An Electrical-Substitution Based Measurement Device for Nonlinearity of Laser Power Meters[J]. Metrology Science and Technology, 2021, 65(11): 29-34. doi: 10.12338/j.issn.2096-9015.2021.0169
Citation: XU Tao, ZHAO Yaru. An Electrical-Substitution Based Measurement Device for Nonlinearity of Laser Power Meters[J]. Metrology Science and Technology, 2021, 65(11): 29-34. doi: 10.12338/j.issn.2096-9015.2021.0169

An Electrical-Substitution Based Measurement Device for Nonlinearity of Laser Power Meters

doi: 10.12338/j.issn.2096-9015.2021.0169
  • Available Online: 2021-09-15
  • Publish Date: 2021-11-01
  • Nonlinearity is the main characteristic of thermoelectric laser power detectors, which represents the change in the detector response under different power, and has an important impact on the measurement accuracy. Based on the electrical substitution method, this paper studies the measurement method for response nonlinearity of laser power detectors at several watts to several hundred watts. An electrical calibration device was developed that can automatically measure electrical calibration responsivity under different power levels. Different from the common constant-voltage mode or constant-current mode, the device has a constant-power output mode, which can significantly improve the stability of loading power for electric calibration heaters with a large temperature coefficient. In the study, two electrical calibration laser power detectors were fabricated based on two kinds of ceramic heaters, and the response nonlinearity of the electrical calibration was measured. The results showed that for the MCH ceramic heater with a large temperature coefficient, the loading power instability under the constant-power mode was 0.025%, which is much lower than 2.0%, i.e. the instability under the constant-voltage mode. Due to the higher power stability and the automated measurement process, the evaluated uncertainty of the measured electric calibration responsivity was better than 0.10% in the power range 0.49 W to 189 W, which was an improvement on the accuracy of the nonlinearity measurement of electrical calibration.
  • loading
  • [1]
    Li X Y, Scott T, Shao Y, et al. Nonlinearity measurements of high-power laser detectors at NIST[J]. J Res Nat Inst Stand Technol, 2004, 109(4): 429-434. doi: 10.6028/jres.109.030
    [2]
    Keenan D A, Laabs H, Dowell M L, et al. Measurements of detector nonlinearity at 193 nm[J]. Applied Optics, 2005, 44(6): 841-8. doi: 10.1364/AO.44.000841
    [3]
    马丽芹, 陆启生, 程湘爱, 等. 激光辐照光电探测器的非线性效应[J]. 青岛科技大学学报(自然科学版), 2003, 24(1): 87-90.
    [4]
    姚和军, 吕正, 林延东. 光学探测器非线性度测试仪的研制[J]. 现代测量与实验室管理, 2001, 9(2): 31-35. doi: 10.3969/j.issn.1673-8764.2001.02.007
    [5]
    陈风, 李双, 王骥, 等. 高精度光电探测器的线性测量[J]. 光学学报, 2008, 28(5): 889-889. doi: 10.3321/j.issn:0253-2239.2008.05.014
    [6]
    孙权社, 陈坤峰, 李艳辉. 叠加法测量紫外探测器非线性的技术研究[J]. 光学学报, 2009(7): 1881-1884.
    [7]
    Vayshenker I, Yang S, Swafford R. Nonlinearity of high-power optical fiber power meters at 1480 nm[J]. Applied Optics, 2006, 45(6): 1098. doi: 10.1364/AO.45.001098
    [8]
    Li X Y, Scott T, Cromer C, et al. Reflective Optical Chopper Used in NIST High-Power Laser Measurements[J]. J Res Natl Inst Stand Technol, 2008, 113(6): 305-309. doi: 10.6028/jres.113.024
    [9]
    Spidell M, Hadler J, Stephens M, et al. Geometric contributions to chopper wheel optical attenuation uncertainty[J]. Metrologia, 2017, 54(4): L19-L25. doi: 10.1088/1681-7575/aa75d2
    [10]
    Stephens M, Yung C S, Tomlin N A, et al. Room temperature laser power standard using a microfabricated electrical substitution bolometer[J]. Rev Sci Instrum, 2021, 92(2): 025107, 1-13.
    [11]
    Kuck S, Brandt F, Kremling H A, et al. Absolute measurement of F2-laser power at 157 nm[J]. Applied Optics, 2006, 45(14): 3325-3330. doi: 10.1364/AO.45.003325
    [12]
    徐涛, 于靖, 邓玉强, 等. 准分子激光功率标准探测器的研制[J]. 应用光学, 2006, 33(4): 999-1002.
    [13]
    Endo M, Inoue T. A double calorimeter for 10-W level Laser power measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(2): 688-691.
    [14]
    Dowell M L, Cromer C L, Jones R D, et al. New developments in deep ultraviolet laser metrology for photolithography[C]. David G S. AIP Conference Proceedings 550. Gaithersburg: American Institute of Physics, 2001: 361-363.
    [15]
    李英娜, 于靖. 激光中功率基准装置的改造[J]. 现代测量与实验室管理, 2000, 8(2): 15-19.
    [16]
    于靖. 瓦级激光功率基准器的研究[J]. 现代计量测试, 1998(1): 38-42.
    [17]
    于靖, 李英娜. 电校准激光中功率计的设计和量值稳定性考察[J]. 现代计量测试, 1996(5): 36-39.
    [18]
    Boyer A, Cisse E, Azzouz Y. Medium-power thermopiles using thin-film technology[J]. Sensors and Actuators A, 1990, 24(3): 217-220. doi: 10.1016/0924-4247(90)80061-9
    [19]
    Charles E, Groubert E, Boyer A. Thin-film thermopiles for measuring high laser powers[J]. Sensors and Actuators, 1988, 13(2): 131-137. doi: 10.1016/0250-6874(88)80035-0
    [20]
    林文青. 采用薄膜热电堆的激光能量计[J]. 应用激光, 1988, 8(2): 21-24.
    [21]
    唐黎明. 浅谈陶瓷电加热元件及其控制电路[J]. 电子制作, 2007(12): 68-69.
    [22]
    谷云峰, 高红梅. 厚膜型MCH电加热元件制造工艺研究[J]. 山西电子技术, 2017(3): 68-69.
    [23]
    罗慧, 李世鸿, 刘寄松, 等. 钌系厚膜电阻重烧变化特性的研究[J]. 贵金属, 2013, 34(1): 33-37. doi: 10.3969/j.issn.1004-0676.2013.01.008
    [24]
    丁鹏, 马以武. 钌基厚膜电阻导电机理的国内外研究状况[J]. 电子器件, 2003(3): 264-268. doi: 10.3969/j.issn.1005-9490.2003.03.008
    [25]
    何健锋. 钌系玻璃釉电位器电阻浆料设计原理及研制[J]. 混合微电子技术, 2004, 15(3): 19-27.
    [26]
    Xu T, Gan H, Yu J, et al. Temporal response of laser power standards with natural convective cooling[J]. Optics Express, 2016, 24(2): 935-944. doi: 10.1364/OE.24.000935
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (411) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return