Volume 66 Issue 4
Jun.  2022
Turn off MathJax
Article Contents
BAI Yang, LU Yunfeng, LIAO Fujian, WANG Yue, LI Zhengkun. Research on Dead-Path Measurement in Interferometer System of Joule Balance[J]. Metrology Science and Technology, 2022, 66(4): 34-39. doi: 10.12338/j.issn.2096-9015.2021.0586
Citation: BAI Yang, LU Yunfeng, LIAO Fujian, WANG Yue, LI Zhengkun. Research on Dead-Path Measurement in Interferometer System of Joule Balance[J]. Metrology Science and Technology, 2022, 66(4): 34-39. doi: 10.12338/j.issn.2096-9015.2021.0586

Research on Dead-Path Measurement in Interferometer System of Joule Balance

doi: 10.12338/j.issn.2096-9015.2021.0586
  • Available Online: 2022-03-21
  • Publish Date: 2022-06-02
  • Optical dead-path is a major error source in the laser interferometer, which, however, is hard to be accurately measured. Joule balance is a mass measurement apparatus traceable to the Planck constant, in which the laser interferometer is used to measure the relative displacement between the suspended coil and the exciting magnet, while the optical dead-path in the interferometer is so large that displacement measurement in the air has been adversely affected. Given this problem, this paper discussed an optical dead-path measurement method based on the optical path difference measurement between the vacuum and non-vacuum environment. This method uses a vacuum system to change the air pressure where the measurement optical path is located, and measures the optical range difference introduced by the change of the refractive index of air, and then calculates the length of the optical dead-path between the excitation interferometric path and the suspension coil interferometric path. The method can reduce the optical dead-path measurement uncertainty from millimeter to micron scale. In addition, by using the dead-path as the absolute distance, this paper discussed the vertical relative position measurement between the suspended coil and the exciting magnet, so that the relative zero position is measured.
  • loading
  • [1]
    PETER J M, DAVID B N, BARRY N T, et al. Data and analysis for the CODATA 2017 special fundamental constants adjustment[J]. Metrologia, 2018, 55(1): 125-132. doi: 10.1088/1681-7575/aa99bc
    [2]
    STOCK M, BARAT P, PINOT P, et al. A comparison of future realizations of the kilogram[J]. Metrologia, 2018, 55(1): 1-7. doi: 10.1088/1681-7575/aa9a7e
    [3]
    KNOPF D, WIEDENHöFER T, LEHRMANN K, et al. A quantum of action on a scale? Dissemination of the quantum based kilogram[J]. Metrologia, 2019, 56(2): 024003. doi: 10.1088/1681-7575/ab0851
    [4]
    LIEBISCH T C, STENGER J, ULLRICH J. Understanding the revised SI: Background, consequences, and perspectives[J]. Annalen der Physik, 2019, 531(5): 1800339. doi: 10.1002/andp.201800339
    [5]
    段宇宁, 刘旭红. 漫谈国际单位制变革[J]. 计量技术, 2019(5): 3-7.
    [6]
    STOCK M, FANG H. Report on the CCM key comparison of kilogram realizations CCM. M-K8.2019[J]. Metrologia, 2020, 57(1A): 07030. doi: 10.1088/0026-1394/57/1A/07030
    [7]
    DAVIDSON S, STOCK M. Beginning of a new phase of the dissemination of the kilogram[J]. Metrologia, 2021, 58(3): 033002. doi: 10.1088/1681-7575/abef9f
    [8]
    罗志勇, 王金涛, 刘翔, 等. 阿伏加德罗常数测量与千克重新定义[J]. 计量学报, 2018, 39(3): 377-380. doi: 10.3969/j.issn.1000-1158.2018.03.18
    [9]
    NEWELL D B, CABIATI F, FISCHER J, et al. The CODATA 2017 values of h, e, k, and N A for the revision of the SI[J]. Metrologia, 2018, 55(1): 6-13. doi: 10.1088/1681-7575/aa950a
    [10]
    PAVESE F. The New SI and the CODATA recommended values of the fundamental constants 2017 [J]. physics, 2018, 53(6): 151203668.
    [11]
    李正坤, 白洋, 许金鑫, 等. 中国计量院在千克重新定义方面的工作和贡献[J]. 计量技术, 2019(5): 28-33.
    [12]
    ZHANG Z, HE Q, LI Z. An approach for improving the watt balance [C]. Proceedings of the 2006 Conference on Precision Electric Measurements Torino, 2006.
    [13]
    ZHENGKUN L, YANG B, JINXIN X, et al. The upgrade of NIM-2 joule balance since 2017[J]. Metrologia, 2020, 57(5): 055007. doi: 10.1088/1681-7575/ab9211
    [14]
    WANG D, LIU Y, BAI Y, et al. Modeling and design of an overlapped-flexure hinge for joule balance[J]. Rev Sci Instrum, 2019, 90(8): 085111. doi: 10.1063/1.5097458
    [15]
    QIAN L, XU J, LI Z, et al. The interaction between the magnetized coil-suspension system and the compensation coil in the joule balance[J]. Metrologia, 2020, 57(4): 045010. doi: 10.1088/1681-7575/ab81e3
    [16]
    XU J, QIAN L, LI Z. The Magnetization Effect in the Joule Balance with Compensation Coil [C]. Proceedings of the 2020 Conference on Precision Electromagnetic Measurements (CPEM), 2020.
    [17]
    BAI Y, WANG D, LI Z, et al. Automatic alignment technique for suspended coil in Joule balance[J]. Metrologia, 2021, 58(6): 1-10.
    [18]
    XU J, ZHANG Z, LI Z, et al. A determination of the Planck constant by the generalized joule balance method with a permanent-magnet system at NIM[J]. Metrologia, 2016, 53(1): 86-97. doi: 10.1088/0026-1394/53/1/86
    [19]
    LI Z, ZHANG Z, LU Y, et al. The first determination of the Planck constant with the joule balance NIM-2[J]. Metrologia, 2017, 54(5): 763-774. doi: 10.1088/1681-7575/aa7a65
    [20]
    BAI Y, HU P, LU Y, et al. A Six-Axis Heterodyne Interferometer System for the Joule Balance[J]. IEEE Trans Instrum Meas, 2017, 66(6): 1579-1585. doi: 10.1109/TIM.2016.2634758
    [21]
    BAI Y, LU Y, LI Z, et al. A Parasitic Displacement Measurement System for Suspended Coil in Joule Balance[J]. IEEE Trans Instrum Meas, 2019, 68(6): 2237-2245. doi: 10.1109/TIM.2018.2872448
    [22]
    YANG H, LU Y, HU P, et al. Measurement and control of the movable coil position of a joule balance with a system based on a laser heterodyne interferometer[J]. Meas Sci Technol, 2014, 25(6): 233-243.
    [23]
    JäGER G. Limits of precision measurements based on interferometers[C]. Proceedings of the Fourth International Symposium on Precision Mechanical Measurements, 2008.
    [24]
    MURALIKRISHNAN B, ZIEBART M, ROBSON S, et al. Recent developments in large-scale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(6): 571-595. doi: 10.1243/09544054JEM1284
    [25]
    JAEGER G. Limitations of precision length measurements based on interferometers[J]. Measurement, 2010, 43(5): 652-658. doi: 10.1016/j.measurement.2009.12.030
    [26]
    MANSKE E, JäGER G, HAUSOTTE T, et al. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Meas Sci Technol, 2012, 23(7): 074001. doi: 10.1088/0957-0233/23/7/074001
    [27]
    刁晓飞. 基于空间分离的高速外差激光干涉测量若干关键技术研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [28]
    GILLMER S R, SMITH R C G, WOODY S C, et al. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration[J]. Meas Sci Technol, 2014, 25(7): 075205. doi: 10.1088/0957-0233/25/7/075205
    [29]
    WANG YC, SHYU LH, TUNG PC, et al. Optimization of the optical parameters in Fabry-Perot interferometer [C]. Proceedings of the Engineering for a Changing World, 2017.
    [30]
    YOKOYAMA S, HORI Y, YOKOYAMA T, et al. A heterodyne interferometer constructed in an integrated optics and its metrological evaluation of a picometre-order periodic error[J]. Precision Engineering, 2018, 54: 206-211. doi: 10.1016/j.precisioneng.2018.04.020
    [31]
    YOON S, PARK Y, CHO K. A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry[J]. Opt Express, 2013, 21(18): 020722. doi: 10.1364/OE.21.020722
    [32]
    杨宏兴, 谭久彬, 胡鹏程, 等. 基于实时监测的激光外差干涉仪闲区误差自动补偿[J]. 光电子激光, 2008, 19(7): 934-937.
    [33]
    BAI Y, LIU Y, LU Y, et al. Stability improvement for coil position locking of joule balance[J]. Metrologia, 2017, 54(4): 461-467. doi: 10.1088/1681-7575/aa6eea
    [34]
    EDLéN B. The Refractive Index of Air[J]. Metrologia, 1966, 2(2): 71-80. doi: 10.1088/0026-1394/2/2/002
    [35]
    钱璐帅, 李正坤, 白洋, 等. 面向能量天平同步测量的磁链差测量方法研究[J]. 计量学报, 2021, 42(9): 1121-1127. doi: 10.3969/j.issn.1000-1158.2021.09.01
    [36]
    YU X, ZHANG T, ELLIS J D. Absolute air refractive index measurement and tracking based on variable length vacuum cell[J]. Optical Engineering, 2016, 55(6): 064112. doi: 10.1117/1.OE.55.6.064112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (736) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return