Volume 66 Issue 6
Jul.  2022
Turn off MathJax
Article Contents
HUANG Ting, WANG Jingyu, WAN Kangni. Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference[J]. Metrology Science and Technology, 2022, 66(6): 26-30. doi: 10.12338/j.issn.2096-9015.2021.0594
Citation: HUANG Ting, WANG Jingyu, WAN Kangni. Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference[J]. Metrology Science and Technology, 2022, 66(6): 26-30. doi: 10.12338/j.issn.2096-9015.2021.0594

Review of Advances in Quantitative Nuclear Magnetic Resonance Methods for Removing Impurity Interference

doi: 10.12338/j.issn.2096-9015.2021.0594
  • Accepted Date: 2022-03-31
  • Available Online: 2022-07-13
  • Publish Date: 2022-07-29
  • Quantitative nuclear magnetic resonance (qNMR) is a potential primary method for determining the purity of organic compounds, which can establish the metrological traceability of the vast majority of organic compounds. The principles, advantages, and challenges of the recent approaches of qNMR methods that can effectively separate the impurity peaks from the quantitative peaks of the analytes are reviewed, including the combination of high-performance liquid chromatography (HPLC) and qNMR, HPLC-qNMR with bi-deuterated mobile phase, HPLC-single-signal-suppression qNMR with single-deuterated mobile phase, HPLC-double-signal-suppression qNMR, internal standard recovery correction (ISRC)-HPLC-qNMR, internal standard correction(ISC)-HPLC-qNMR, extended internal standard method for qNMR assisted by chromatography (EIC), peptide impurity corrected qNMR (PICqNMR), two-dimensional NMR: quantitative heteronuclear single quantum correlation NMR (qHSQC), and HPLC-qNMR-HPLC. These methods can reduce the potential systematic errors in qNMR, improve the accuracy of the results, and expand the application of qNMR as a metrological potential primary method and a routine analysis method.
  • loading
  • [1]
    SAITO T, IWASAWA R, IHARA T, et al. Evaluation of accuracy for the quantitative analysis using Nuclear Magnetic Resonance as a detector of HPLC[J]. Chromatography, 2003, 24: 117-120.
    [2]
    GODEJOHANN M, PREISS A. Quantitative Measurements in Continuous-Flow HPLC/NMR[J]. Anal Chem, 1998, 70: 590-595. doi: 10.1021/ac970630s
    [3]
    HUANG T, ZHANG W, DAI X, et al. High performance liquid chromatography quantitative nuclear magnetic resonance (HPLC-qNMR) with a two-signal suppression method for purity assessment of avermectin B1a[J]. Anal Methods, 2016, 8: 4482-4486. doi: 10.1039/C6AY00570E
    [4]
    ZHANG W, HUANG T, LI H, et al. Determination of avermectins by the internal standard recovery correction - high performance liquid chromatography - quantitative Nuclear Magnetic Resonance method[J]. Talanta, 2017, 172: 78-85. doi: 10.1016/j.talanta.2017.04.080
    [5]
    SUN X, ZHANG W, HUANG T, et al. Purity determination of pyributicarb by internal standard correction–high-performance liquid chromatography–quantitativenuclear magnetic resonance[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 6983-6993. doi: 10.1007/s00216-020-02832-0
    [6]
    SAITO N, KITAMAKI Y, OTSUKA S, et al. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra[J]. Talanta, 2018, 184: 484-490. doi: 10.1016/j.talanta.2018.03.003
    [7]
    KITAMAKI Y, SAITO N, YAMAZAKI T, et al. Determination of PAHs in solution with a single reference standard by a combination of 1H quantitative NMR spectroscopy and chromatography[J]. Anal Chem, 2017, 89: 6963-6968. doi: 10.1021/acs.analchem.6b05074
    [8]
    JOSEPHS R D, STOPPACHER N, DAIREAUX A, et al. State-of-the-art and trends for the SI traceable value assignment of the purity of peptides using the model compound Angiotensin I[J]. Trends Anal Chem, 2018, 101: 108-119. doi: 10.1016/j.trac.2017.09.026
    [9]
    MELANSON J E, THIBEAULT M P, STOCKS B B, et al. Purity assignment for peptide certified reference materials by combining qNMR and LC-MS/MS amino acid analysis results: application to angiotensin II[J]. Anal Bioanal Chem, 2018, 410(26): 6719-6731. doi: 10.1007/s00216-018-1272-7
    [10]
    HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin[J]. J Am Chem Soc, 2003, 125: 4362-4367. doi: 10.1021/ja029035k
    [11]
    FARDUS-REID F, WARREN J, LE GRESLEY A. Validating heteronuclear 2D quantitative NMR[J]. Anal Methods, 2016, 8: 2013-2019. doi: 10.1039/C6AY00111D
    [12]
    HU K, ELLINGER J J, CHYLLA R A, et al. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis[J]. Anal Chem, 2011, 83(24): 9352-9360. doi: 10.1021/ac201948f
    [13]
    WANG T, LIU Q, WANG M, et al. Quantitative Measurement of a Chiral Drug in a Complex Matrix: a J-compensated HSQC (QHSQC) NMR Method[J]. Anal Chem, 2020, 92(5): 3636-3642. doi: 10.1021/acs.analchem.9b04591
    [14]
    GIRAUDEAU P, FRYDMAN L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy[J]. Annu Rev Anal Chem, 2014, 7: 129-161. doi: 10.1146/annurev-anchem-071213-020208
    [15]
    GIRAUDEAU P, REMAUD G S, AKOKA S. Evaluation of ultrafast 2D NMR for quantitative analysis[J]. Anal Chem, 2009, 81: 479-484. doi: 10.1021/ac8021168
    [16]
    PATHAN M, AKOKA S, TEA I, et al. "Multi-scan single shot" quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR[J]. Analyst, 2011, 136: 3157-3163. doi: 10.1039/c1an15278e
    [17]
    CAO R, NONAKA A, KOMURA F, et al. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages[J]. Food Chem, 2015, 171: 8-12. doi: 10.1016/j.foodchem.2014.08.105
    [18]
    ZHANG W, HUANG T, LI H, et al. Purity measurement of human C-peptide by high performance liquid chromatography and quantitative nuclear magnetic resonance[J]. Int J Pept Res Ther, 2018, 24: 391-396. doi: 10.1007/s10989-017-9620-6
    [19]
    MA R, HUANG T, ZHANG W, et al. High performance liquid chromatography - quantitative nuclear magnetic resonance - high performance liquid chromatography for purity measurement of human insulin[J]. Journal of Liquid Chromatography & Related Technologies, 2018, 41(4): 170-179. doi: 10.1080/10826076.2018.1428622
    [20]
    CHYLLA R A, HU K, ELLINGER J J, et al. Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics[J]. Anal Chem, 2011, 83: 4871-4880. doi: 10.1021/ac200536b
    [21]
    MEYER K, RADEMANN K, PANNE U, et al. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures[J]. J Magnet Reson, 2016, 275: 1-10.
    [22]
    CLUFF K J, GOODWIN L A, HAMILTON C E, et al. Quantitative determination of wax contamination in polystyrene HIPE foam using solid-state NMR[J]. Fusion Sci Technol, 2018, 73: 183-218.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (402) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return