Volume 66 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
GUO Ruimin. Research Progress of Gas Spectroscopy Technology[J]. Metrology Science and Technology, 2022, 66(10): 52-56. doi: 10.12338/j.issn.2096-9015.2022.0145
Citation: GUO Ruimin. Research Progress of Gas Spectroscopy Technology[J]. Metrology Science and Technology, 2022, 66(10): 52-56. doi: 10.12338/j.issn.2096-9015.2022.0145

Research Progress of Gas Spectroscopy Technology

doi: 10.12338/j.issn.2096-9015.2022.0145
  • Received Date: 2022-06-21
  • Accepted Date: 2022-08-04
  • Rev Recd Date: 2022-08-04
  • Available Online: 2022-11-16
  • Publish Date: 2022-10-18
  • The use of spectroscopic technology for gas measurement is to trace the gas value to the line intensity of the gaseous molecule. This paper introduces the latest research progress of gas spectroscopy measurement technology by the National Institute of Metrology, China. The cavity length stabilization, Pound-Drever-Hall frequency locking, temperature controlling technique. and optical frequency combs are used in the experimental setup of the cavity ring-down spectrometer. The temperature change does not exceed 5 mK in 3 hours, and the vacuum leakage does not exceed 0.013 Pa in 1 hour. The absorption line of CO2 molecule was measured by the developed experimental device, and the source of uncertainty of the transition line intensity was analyzed and given. The relative standard uncertainty of the evaluation was about 0.08%.
  • loading
  • [1]
    Fleisher A J, Adkins E M, Reed Z D, et al. Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity[J]. Physical Review Letters, 2019, 123(4): 43001. doi: 10.1103/PhysRevLett.123.043001
    [2]
    Nwaboh J A, Werhahn O, Ebert V. H2O Collisional Broadening Coefficients at 1.37 µm and Their Temperature Dependence: A Metrology Approach[J]. Applied Sciences, 2021, 11(12): 5341. doi: 10.3390/app11125341
    [3]
    Kim Y, Lim J S. Spectral Line Shape Analysis Using Hartmann-Tran Profile for Tunable Diode Laser Absorption Spectroscopy of Water Vapor at 1.39 μm[J]. Bulletin of the Korean Chemical Society, 2020, 41(4): 418-423. doi: 10.1002/bkcs.11985
    [4]
    Curtis E A, Black N C G, Barwood G P. Noise-Immune, Cavity-Enhanced, Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) for Trace Gas Detection[C]. Conference on Lasers and Electro-Optics (CLEO). San Jose: United States Optica Publishing Group, 2020: SM1M. 6.
    [5]
    Persijn S. Purity Analysis of Gases Used in the Preparation of Reference Gas Standards Using a Versatile OPO-Based CRDS Spectrometer[J]. Journal of Spectroscopy, 2018, 2018(148): 1-7.
    [6]
    寇潇文, 周宾, 刘训臣, 等. 腔衰荡光谱方法测量大气中痕量NH3的浓度[J]. 光学学报, 2018, 38(11): 361-370.
    [7]
    Ma G, He Y, Chen B, et al. Quasi-Simultaneous Sensitive Detection of Two Gas Species by Cavity-Ringdown Spectroscopy with Two Lasers[J]. Sensors, 2021, 21(22): 7622. doi: 10.3390/s21227622
    [8]
    Zhao G, Hausmaninger T, Ma W, et al. Shot-noise-limited Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry[J]. Optics Letters, 2018, 43(4): 715-718. doi: 10.1364/OL.43.000715
    [9]
    Tan Y, Xu Y R, Hua T P, et al. Cavity-enhanced saturated absorption spectroscopy of the (30012) − (00001) band of 12C16O2[J]. The Journal of Chemical Physics, 2022, 156(4): 44201. doi: 10.1063/5.0074713
    [10]
    Lin H, Yang L, Feng X J, et al. Discovery of New Lines in the R9 Multiplet of the 2v3 Band of 12CH4[J]. Physical Review Letters, 2019, 122(1): 13002.1-13002.4.
    [11]
    曹珂, 张桂春, 郭瑞民, 等. 基于光腔衰荡光谱的气体成份量测量技术[J]. 计量技术, 2017(8): 7-11.
    [12]
    董贺伟, 郭瑞民, 崔文超, 等. 基于折叠腔的光腔衰荡光谱技术研究[J]. 中国激光, 2020, 47(3): 291-297.
    [13]
    Guo R M, Teng J H, Cao K, et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 2019, 27(22): 31850-31863. doi: 10.1364/OE.27.031850
    [14]
    曹珂, 梁超群, 郭瑞民, 等. 衰荡光腔温度控制研究[J]. 计量学报, 2018, 39(3): 431-435. doi: 10.3969/j.issn.1000-1158.2018.03.29
    [15]
    苏婉, 郭瑞民, 邢素霞, 等. 高稳定性及均匀性光腔温度控制研究[J]. 计量技术, 2018(10): 10-12,42.
    [16]
    邢素霞, 曹宇, 郭瑞民, 等. 基于有限元的衰荡光腔内温度分布仿真[J]. 计算机仿真, 2021, 38(1): 412-415.
    [17]
    崔文超, 郭瑞民, 王德发, 等. 分布反馈激光器温度与电流控制研究[J]. 激光技术, 2019, 43(4): 437-441. doi: 10.7510/jgjs.issn.1001-3806.2019.04.001
    [18]
    邢素霞, 王睿, 郭瑞民, 等. 蝶形半导体激光器恒流驱动设计与实现[J]. 激光与红外, 2019, 49(5): 553-558. doi: 10.3969/j.issn.1001-5078.2019.05.007
    [19]
    邢素霞, 潘子妍, 王睿, 等. 高精度半导体激光器驱动控制系统设计[J]. 电子测量技术, 2020, 43(17): 174-180.
    [20]
    李东, 崔文超, 郭瑞民, 等. 基于FPGA的电压信号采集卡研究[J]. 仪表技术与传感器, 2021(6): 123-126.
    [21]
    邢素霞, 陈思, 郭瑞民, 等. 基于光腔衰荡光谱法的气体分子光谱吸收线型拟合算法研究[J]. 激光与光电子学进展, 2019, 56(19): 299-305.
    [22]
    Li D, Guo R M, Dong H W. Spectral line-shape analysis of CO2 transition using Hartmann-Tran profile and its asymptotic limits[J]. Journal of Molecular Spectroscopy, 2021, 379: 111480. doi: 10.1016/j.jms.2021.111480
    [23]
    Guo R M, Teng J H, Dong H W, et al. Line parameters of the P-branch of (30012) ← (00001) 12C16O2 band measured by comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 264: 107555. doi: 10.1016/j.jqsrt.2021.107555
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (222) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return