Volume 67 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
FAN Qiming, XU Ning, WU Tingyan, LIU Zhiwei, ZHANG Zhixin. Research on High Stability Fiber Bragg Grating Wavelength Standard[J]. Metrology Science and Technology, 2023, 67(1): 50-54. doi: 10.12338/j.issn.2096-9015.2022.0218
Citation: FAN Qiming, XU Ning, WU Tingyan, LIU Zhiwei, ZHANG Zhixin. Research on High Stability Fiber Bragg Grating Wavelength Standard[J]. Metrology Science and Technology, 2023, 67(1): 50-54. doi: 10.12338/j.issn.2096-9015.2022.0218

Research on High Stability Fiber Bragg Grating Wavelength Standard

doi: 10.12338/j.issn.2096-9015.2022.0218
  • Available Online: 2023-01-31
  • Publish Date: 2023-01-18
  • Fiber Bragg grating (FBG) demodulators are widely used in various fields, including civil engineering, aviation, healthcare, and national defense. To comply with the Calibration Specification for Optical Fiber Bragg Grating Sensor Network Analyzers (JJF 1804-2020), it is crucial to calibrate the wavelength demodulation values of the FBG demodulator using a stable reference standard FBG. In this study, we developed a set of high stability FBG wavelength reference standards by utilizing a specially designed stress relief structure, intelligent control algorithm, and semiconductor refrigeration technology to achieve high precision temperature control. Through repeatability testing and comparison to commercial FBG measurements, we demonstrate that the performance of our developed FBG wavelength standards far exceeds the requirements of the calibration specification. Our results show that our FBG demodulator calibration procedure significantly improves the calibration uncertainty of the instrument.
  • loading
  • [1]
    吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学, 2014, 7(4): 519-531.
    [2]
    国家市场监督管理总局. 布拉格光纤光栅传感网络分析仪校准规范: JJF 1804-2020[S]. 北京: 中国计量出版社, 2020 .
    [3]
    Yoffe G W, Krug P A, Ouellette F, et al. Passive temperature-compensating package for optical fiber gratings[J]. Applied Optics, 1995, 34(30): 6859-6861. doi: 10.1364/AO.34.006859
    [4]
    黄勇林, 李杰, 开桂云, 等. 光纤光栅的温度补偿[J]. 光学学报, 2003(6): 677-679. doi: 10.3321/j.issn:0253-2239.2003.06.008
    [5]
    Dyer S D, Williams P A, Espejo R J, et al. Fundamental limits in fiber Bragg grating peak wavelength measurements[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2005, 5855: 1-6.
    [6]
    Hsu Y S, Wang L, Liu W F, et al. Temperature Compensation of Optical Fiber Bragg Grating Pressure Sensor[J]. IEEE Photonics Technology Letters, 2006, 18(7): 874-876. doi: 10.1109/LPT.2006.871832
    [7]
    Rowe M A, Swann W C, Gilbert S L. Multiple-wavelength reference based on interleaved, sampled fiber Bragg gratings and molecular absorption[J]. Applied Optics, 2004, 43(17): 3530-3534. doi: 10.1364/AO.43.003530
    [8]
    郭永兴, 匡毅, 熊丽, 等. 不同封装方式的光纤光栅传感与温补特性[J]. 激光与光电子学进展, 2018, 55(11): 99-106.
    [9]
    周锋, 李永倩, 王劭龙. 光纤布拉格光栅传感器及其封装研究进展[J]. 光通信技术, 2017, 41(11): 8-11.
    [10]
    Y Zhang, L Zhu, F Luo, et al. Comparison of Metal-Packaged and Adhesive-Packaged Fiber Bragg Grating Sensors[J]. IEEE Sensors Journal, 2016, 16(15): 5958-5963. doi: 10.1109/JSEN.2016.2577610
    [11]
    Y Guo, L Xiong, H Liu. Research on the Durability of Metal-Packaged Fiber Bragg Grating Sensors[J]. IEEE Photonics Technology Letters, 2019, 31(7): 525-528. doi: 10.1109/LPT.2019.2900069
    [12]
    Bessie A Ribeiro, Marcelo Martins Werneck, Regina Celia da Silva Barros Allil. Calibration and operation of a fibre Bragg grating temperature sensing system in a grid-connected hydrogenerator[J]. IET science, measurement & technology, 2013, 7(1): 59-68.
    [13]
    庞丹丹. 新型光纤光栅传感技术研究[D]. 济南: 山东大学, 2014.
    [14]
    何进. 基于半导体制冷技术的温度控制系统研究[D] . 天津: 中国民航大学, 2017.
    [15]
    谢文华. 基于FLOTHERM软件的双极功率晶体管热分布研究[D]. 成都: 电子科技大学, 2010.
    [16]
    李江澜, 石云波, 赵鹏飞, 等. TEC的高精度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6): 1745-1749. doi: 10.3969/j.issn.1007-2276.2014.06.009
    [17]
    吴俊, 李长俊. 基于TEC的高精度温控系统设计[J]. 电子设计工程, 2017, 25(20): 75-79. doi: 10.3969/j.issn.1674-6236.2017.20.019
    [18]
    S Wang, X Niu, L Zhang. Research on the Environment Temperature of 3D Printing Methacrylate based on Adaptive Fuzzy PID Algorithm[C]. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE, 2019: 264-268.
    [19]
    R Raj, P M Pathak, G Bhandari, et al. Two- and Three-Input Fuzzy PID Controller Structure of Takagi-Sugeno Type[C]. 2019 19th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2019: 1605-1609.
    [20]
    王玉德, 韩秀庆, 韩秀勇, 等. PID参数调整仿真比较研究[J]. 电气自动化, 2011, 33(6): 1-3,6. doi: 10.3969/j.issn.1000-3886.2011.06.001
    [21]
    苏卫东, 任思聪, 刘升才. 温控箱数学模型的建立及其自适应PID控制[J]. 中国惯性技术学报, 1995(4): 34-38.
    [22]
    王生成. 基于模糊控制温控系统的研究[D] . 大连: 大连理工大学, 2002.
    [23]
    林子超, 姚玉林, 周通, 等. 基于四维协变量的光栅干涉系统频移理论研究[J]. 计量科学与技术, 2022, 66(11): 3-11, 26.
    [24]
    崔磊, 刘佳畅, 贾亚青, 等. 小型光通量计校准方法研究[J]. 计量科学与技术, 2022, 66(1): 19-21, 31.
    [25]
    李卓然, 李雨霄, 蒋依芹, 等. 光学测量系统信噪比优化方法研究[J]. 计量科学与技术, 2022, 66(2): 50-54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (248) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return