Volume 67 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
MA Mengze, CAO Wenhui, LI Jinjin, XU Da, WANG Shijian, GAO He, ZHONG Qing, ZHONG Yuan. Design of a Dual-Channel Josephson Array Test System[J]. Metrology Science and Technology, 2023, 67(3): 35-42. doi: 10.12338/j.issn.2096-9015.2023.0023
Citation: MA Mengze, CAO Wenhui, LI Jinjin, XU Da, WANG Shijian, GAO He, ZHONG Qing, ZHONG Yuan. Design of a Dual-Channel Josephson Array Test System[J]. Metrology Science and Technology, 2023, 67(3): 35-42. doi: 10.12338/j.issn.2096-9015.2023.0023

Design of a Dual-Channel Josephson Array Test System

doi: 10.12338/j.issn.2096-9015.2023.0023
  • Received Date: 2023-02-03
  • Accepted Date: 2023-03-07
  • Rev Recd Date: 2023-03-31
  • Available Online: 2023-04-11
  • Publish Date: 2023-03-18
  • In response to the growing demand for chip testing, a dual-channel Josephson array test system was designed, incorporating key components such as low-temperature test probes and microwave transmission structures. The test system enables simultaneous measurement of two programmable Josephson devices and provides superimposed voltage output of the two chips. The system's functionalities were validated by measuring a dual-channel programmable Josephson device. The optimal operating frequency of the device is 17 GHz, with an operating power of 11 dBm without a power amplifier. For the dual-channel small voltage programmable Josephson device, the minimum array consists of 1 junction with an output voltage of 35.15 μV, and the maximum array contains 512 junctions with an output voltage of 17998.42 μV. The broadening range of quantum voltage steps is 2 μV. This is due to 34420A (1 V range) noise and testing system noise, which meets the requirements of quantum voltage testing.The dual-channel quantum voltage output is 70.30 μV for a single junction and 35996.84 μV for 512 junctions, the broadening range of quantum voltage steps after superposition is also within 2 μV. This demonstrates that the dual-channel Josephson array test system can not only measure two independent programmable chips but also achieve quantum voltage superimposed output without increasing process difficulty.
  • loading
  • [1]
    周天地, 贾正森, 王磊, 等. 基于SNS型双路约瑟夫森结阵驱动方法研究[J]. 计量学报, 2020, 41(3): 290-295. doi: 10.3969/j.issn.1000-1158.2020.03.04
    [2]
    周琨荔, 屈继峰, 张钟华, 等. 交流量子电压标准研究综述[J]. 计量学报, 2017, 38(4): 486-491. doi: 10.3969/j.issn.1000-1158.2017.04.22
    [3]
    贾正森, 王磊, 张江涛, 等. 交流约瑟夫森量子电压在电磁计量中的应用[J]. 计量科学与技术, 2020(8): 44-50,60. doi: 10.3969/j.issn.1000-0771.2020.08.09
    [4]
    李安香. 交流约瑟夫森电压标准系统的介绍[J]. 计量与测试技术, 2016, 43(4): 34-35. doi: 10.15988/j.cnki.1004-6941.2016.04.015
    [5]
    段俊毅, 朱振东, 周亚东, 等. 基于衍射光学器件的芯片尺度激光冷却原子研究[J]. 计量科学与技术, 2021, 65(10): 10-14,40.
    [6]
    Lloyd F L, Hamilton C A, Beall J A, et al. A Josephson array voltage standard at 10 V[J]. IEEE Electron Device Letters, 2005, 8(10): 449-450.
    [7]
    Niemeyer J, Hinken J H, Kautz R L. Microwave-induced constant-voltage steps at one volt from a series array of Josephson junctions[J]. Appl Phys Lett, 1984, 45(4): 478-480. doi: 10.1063/1.95222
    [8]
    Zhou K, Qu J, Dong X. Low crest factor multitone waveform synthesis with the AC Josephson voltage standard[C]. IEEE, 2015.
    [9]
    Zhou K, Qu J, Zhou Z, et al. Modeling the nonlinear amplifier with the pulse-driven ac Josephson voltage standard[C]. IEEE, 2018.
    [10]
    周琨荔, 韩琪娜, 赵建亭, 等. 1V脉冲驱动型交流量子电压源研究[J]. 计量学报, 2020, 41(12): 1529-1535. doi: 10.3969/j.issn.1000-1158.2020.12.14
    [11]
    秦玉伟. 一种简易的智能数字芯片检测装置[J]. 计量技术, 2016(11): 14-17.
    [12]
    Benz S P, Hamilton C A, Burroughs C J, et al. Stable 1 volt programmable voltage standard[J]. Applied Physics Letters, 1997, 71(13): 1866-1868. doi: 10.1063/1.120189
    [13]
    陈钧, 曾博, 邓俊泳, 等. 样品长期稳定性等引入的不确定度对电磁兼容能力验证计划结果评价影响的探讨[J]. 计量科学与技术, 2022, 66(11): 64-67,72. doi: 10.12338/j.issn.2096-9015.2021.0252
    [14]
    贾伟广, 朱丽萍, 于建清, 等. 电磁海流计实验水槽流场校准技术研究[J]. 计量科学与技术, 2021, 65(4): 45-48.
    [15]
    梁庆凡, 孙标, 许方平, 等. 高压仪器设备计量过程中高压工频电场强度探究[J]. 计量科学与技术, 2021, 65(9): 22-25,21. doi: 10.12338/j.issn.2096-9015.2020.0290
    [16]
    Jeanneret B, Benz S. P. Application of the Josephson effect in electrical metrology[J]. The European Physical Journal Special Topics, 2009, 172: 181-206. doi: 10.1140/epjst/e2009-01050-6
    [17]
    Mueller F, Behr R, Weimann T, et al. 1 V and 10 V SNS Programmable Voltage Standards for 70 GHz[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 981-986. doi: 10.1109/TASC.2009.2017911
    [18]
    Burroughs C J, Rüfenacht, A, Dresselhaus P D, et al. A 10 Volt "Turnkey" Programmable Josephson Voltage Standard for DC and Stepwise-Approximated Waveforms[J]. Ncsli Measure, 2009, 4(3): 70-75. doi: 10.1080/19315775.2009.11721485
    [19]
    C. J. Burroughs, Paul D. Dresselhaus, Alain Rufenacht, et al. NIST 10 V Programmable Josephson Voltage Standard System[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7): 2482-2488. doi: 10.1109/TIM.2010.2101191
    [20]
    P. D. Dresselhaus, M. Elsbury, C. J. Burroughs, et al. Design of a turn-key 10 V Programmable Josephson Voltage Standard system[C]. Conference on Precision Electromagnetic Measurements Digest, 2008.
    [21]
    Yamamori H, Ishizaki M, Shoji A, et al. 10 V programmable Josephson voltage standard circuits using NbN/TiNx/NbN/TiNx/NbN double-junction stacks[J]. Applied Physics Letters, 2006, 88(4): 42503. doi: 10.1063/1.2167789
    [22]
    P. D. Dresselhaus, M. M. Elsbury, D. Olaya, et al. 10 Volt Programmable Josephson Voltage Standard Circuits Using NbSi-Barrier Junctions[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 693-696. doi: 10.1109/TASC.2010.2079310
    [23]
    F. Müller, T. Scheller, R. Wendisch, et al. NbSi Barrier Junctions Tuned for Metrological Applications up to 70 GHz: 20 V Arrays for Programmable Josephson Voltage Standards[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 1101005. doi: 10.1109/TASC.2012.2235895
    [24]
    Cao W H, Li J J, Zhong Y, et al. Study of Nb/NbxSi1-x/Nb Josephson junction arrays[J]. Chinese Physics B, 2015, 24(12): 531-535.
    [25]
    王兰若, 钟源, 李劲劲等. 用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制[J]. 物理学报, 2018, 67(10): 226-231. doi: 10.7498/aps.67.20172643
    [26]
    Wang L R, Li J J, Cao W H, et al. The development of 0.5-V Josephson junction array devices for quantum voltage standards[J]. Chinese Physics B, 2019, 28(6): 453-457.
    [27]
    Cao W, Li J, Zhong Y, et al. Realization of a 2-V Programmable Josephson Junction Array Using Balanced Segmentation Scheme[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(9): 1-5.
    [28]
    Li H, Gao Y, Wang Z. Microvolt Josephson voltage set-up based on two programmable Josephson arrays[C]. IEEE, 2014.
    [29]
    Li H, Gao Y, Wang Z. A differential programmable Josephson voltage standard for low-measurement[C]. IEEE, 2016.
    [30]
    Shapiro S, Janus A R, Holly S. Effect of microwaves on Josephson currents in superconducting tunneling[J]. Phys Rev Lett, 1963, 11(80): 80-82.
    [31]
    赵晓春, 林玉文, 唐先锋, 等. 超导量子芯片上磁场串扰抑制方法[J]. 电气应用, 2022, 41(4): 83-89, 16-18. doi: 10.12338/j.issn.2096-9015.2020.9025
    [32]
    贾志立, 蒲成, 任玲玲. 荧光量子效率绝对测量方法研究[J]. 计量科学与技术, 2022, 66(9): 17-22,32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (339) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return