Volume 67 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Ran, CUI Lei, WANG Yalei, ZHANG Yi, TAO Xingfu, LI Xu. Study on Reference Materials of Copper Content in Aluminum-Copper Thin Films[J]. Metrology Science and Technology, 2023, 67(3): 72-79. doi: 10.12338/j.issn.2096-9015.2023.0096
Citation: ZHANG Ran, CUI Lei, WANG Yalei, ZHANG Yi, TAO Xingfu, LI Xu. Study on Reference Materials of Copper Content in Aluminum-Copper Thin Films[J]. Metrology Science and Technology, 2023, 67(3): 72-79. doi: 10.12338/j.issn.2096-9015.2023.0096

Study on Reference Materials of Copper Content in Aluminum-Copper Thin Films

doi: 10.12338/j.issn.2096-9015.2023.0096
  • Received Date: 2023-03-30
  • Accepted Date: 2023-04-10
  • Rev Recd Date: 2023-04-28
  • Available Online: 2023-05-10
  • Publish Date: 2023-03-18
  • An aluminum-copper (Al-Cu) thin film reference material for copper content, intended for the calibration of X-ray energy/wave spectrometers, was developed in this study. The uniformity and stability of the developed Al-Cu thin film reference material were evaluated using an electronic probe. An inductively coupled plasma emission spectrometer (ICP-OES) was employed to determine the copper content (wt%) of the reference material. The sources of uncertainty for the copper content in the Al-Cu film standard with a nominal value of 49.5% were examined, and the uncertainty of the reference material was evaluated. The findings indicate that the reference material displays good uniformity and stability. The copper content standard value of the reference material was found to be 49.46 wt%, with an extended uncertainty of 0.98 wt% (k=2). The developed Al-Cu thin film copper content reference material for X-ray energy/wave spectrometer calibration meets the calibration requirements for quantitative analyses conducted with X-ray energy/wave spectrometers. It fills a domestic gap in reference materials for X-ray energy/wave spectrometer calibration and provides a measurement assurance and technical support for the quantitative analysis of copper content in China's scientific research industry.
  • loading
  • [1]
    张传杰, 夏星辉, 郭丙如, 等. 扫描电子显微镜-能谱仪在吸入式干粉制剂表征中的应用进展[J]. 中国现代应用药学, 2023, 40(1): 126-132.
    [2]
    李明辉, 郜鲜辉, 吴金金, 等. 电子探针波谱仪和能谱仪在材料分析中的应用及对比[J]. 电子显微学报, 2020, 39(2): 218-223.
    [3]
    伍泳斌, 赵英杰, 王晓娟, 等. 银掺杂氧化亚铜薄膜的制备及其光电性能[J]. 半导体技术, 2019, 44(4): 291-296,320.
    [4]
    郑巧荣. 电子探针能谱矿物定量分析[J]. 岩矿测试, 1994(2): 105-108.
    [5]
    Brodusch K. Improvement of the energy resolution of energy dispersive spectrometers (EDS) using Richardson-Lucy deconvolution[J]. Ultramicroscopy, 2020, 209: 112886. doi: 10.1016/j.ultramic.2019.112886
    [6]
    龚玉武, 熊樱菲, 吴婧玮. 能谱仪在古陶瓷无损检测中的技术指标评估[J]. 中国检验检测, 2022, 30(1): 30-37.
    [7]
    吴园园, 石丽丽, 张珂. 扫描电镜能谱仪测定不锈钢中镍含量测量结果的不确定度评定[J]. 冶金分析, 2020, 40(4): 49-53.
    [8]
    王雪珂. EDS分析的若干影响因素研究[D]. 成都: 电子科技大学, 2017.
    [9]
    张素伟, 姚雅萱, 高慧芳, 等. X射线光电子能谱技术在材料表面分析中的应用[J]. 计量科学与技术, 2021(1): 40-44.
    [10]
    Hodoroaba V D, Procop M. A Method to Test the Performance of an Energy-Dispersive X-Ray Spectrometer (EDS)[J]. Microscopy and Microanalysis, 2014, 20(5): 1-9.
    [11]
    Pinard P T, Protheroe A, Holland J, et al. Development and validation of standardless and standards-based X-ray microanalysis[J]. IOP Conference Series Materials Science and Engineering, 2020, 891: 012020. doi: 10.1088/1757-899X/891/1/012020
    [12]
    王松, 高钰涯, 王军, 等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641-655.
    [13]
    祁海, 马冲先, 张培志, 等. 原位微区分析标准样品制备技术的研究进展[J]. 理化检验(化学分册), 2020, 56(8): 938-944.
    [14]
    陈佳妮. 矿物微区分析中透射电镜测试技术的应用[J]. 高校地质学报, 2021, 27(3): 356-365. doi: 10.16108/j.issn1006-7493.2021037
    [15]
    王苗苗, 姚雅萱, 蒲成, 等. 低场核磁共振技术在材料领域的应用[J]. 计量科学与技术, 2021(1): 50-54,93.
    [16]
    雷娜, 王明辉, 杨志权, 等. 制样方法对IF钢透射电镜复型样品分析的影响[J]. 中国检验检测, 2023, 31(1): 24-26.
    [17]
    厉艳君, 吴立敏, 周莹, 等. 生物纳米材料透射电镜样品制备条件研究[J]. 实验室研究与探索, 2021, 40(9): 43-45,56. doi: 10.19927/j.cnki.syyt.2021.09.010
    [18]
    任玲玲. 材料计量论述[J]. 计量科学与技术, 2021(1): 3-7.
    [19]
    Zhong Y, Ni Z, Li J, et al. Influence mechanism of RF bias on microstructure and superconducting properties of sputtered niobium thin films[J]. Vacuum, 2023, 207: 111636. doi: 10.1016/j.vacuum.2022.111636
    [20]
    Wang L, Zhong Y, Li J, et al. Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition[J]. Mater. Res. Express, 2018, 5: 046410. doi: 10.1088/2053-1591/aab8c1
    [21]
    余琼, 连危洁, 温毅博, 等. 辉光放电质谱法测定超高纯铜溅射靶材中痕量杂质元素及其相对灵敏度因子的求取[J]. 理化检验-化学分册, 2022, 58(9): 1049-1055.
    [22]
    国家技术监督局. 一级标准物质技术规范: JJF 1006-1994[S]. 北京: 中国质检出版社, 1994.
    [23]
    左晓剑, 赵宜娜, 陈银莉. 电子探针定量分析轴承钢中碳元素的标准样品研制[J]. 冶金分析, 2023, 43(1): 25-30. doi: 10.13228/j.boyuan.issn1000-7571.011841
    [24]
    International Organization for Standardization (ISO). Reference materials-General and statistical principles for certification: ISO Guide 35[S]. Geneva, Switzerland: ISO, 2006
    [25]
    王梅玲, 王海, 任丹华, 等. 铜铟镓硒薄膜元素含量的ICP-OES/ICP-MS分析[J]. 计量科学与技术, 2022, 66(12): 11-15,45. doi: 10.12338/j.issn.2096-9015.2022.0159
    [26]
    Morrison C, Sun H, Yao Y, et al. Methods for the ICP-OES Analysis of Semiconductor Materials[J]. Chemistry of Materials, 2020, 32(5): 1760-1768. doi: 10.1021/acs.chemmater.0c00255
    [27]
    李颖, 李本涛, 黄辉, 等. 水中硒成分分析标准物质研制[J]. 计量科学与技术, 2021, 65(6): 49-53. doi: 10.12338/j.issn.2096-9015.2020.0008
    [28]
    李园. ICP-OES法测定高纯金中银含量的不确定度评定浅析[J]. 世界有色金属, 2022(14): 138-141. doi: 10.3969/j.issn.1002-5065.2022.14.044
    [29]
    国家质量监督检验检疫总局. 通用计量术语及定义: JJF 1001-2011[S]. 北京: 中国质检出版社, 2011.
    [30]
    国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国质检出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (456) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return