Volume 67 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHANG Yubo, LI Zhun, LU Yunfeng, HE Qing. Research on Metrology Techniques for Strong Magnetic Fields Using the Magnetic Flux Modulation Method[J]. Metrology Science and Technology, 2023, 67(6): 22-28, 62. doi: 10.12338/j.issn.2096-9015.2023.0138
Citation: ZHANG Yubo, LI Zhun, LU Yunfeng, HE Qing. Research on Metrology Techniques for Strong Magnetic Fields Using the Magnetic Flux Modulation Method[J]. Metrology Science and Technology, 2023, 67(6): 22-28, 62. doi: 10.12338/j.issn.2096-9015.2023.0138

Research on Metrology Techniques for Strong Magnetic Fields Using the Magnetic Flux Modulation Method

doi: 10.12338/j.issn.2096-9015.2023.0138
  • Received Date: 2023-05-18
  • Accepted Date: 2023-05-26
  • Rev Recd Date: 2023-06-19
  • Available Online: 2023-07-28
  • Publish Date: 2023-06-18
  • Stable, strong magnetic fields are instrumental in scientific research, biomedicine, and material science. Addressing the challenges in measuring and tracing super-strong magnetic fields, we introduce a measurement method derived from the magnetic flux modulation principle, leading to the development of a highly stable magnetic field measuring instrument. By employing a refined signal conditioning circuit and harnessing the phase-locking principle to achieve optimal signal-to-noise ratio, we deduce the induced electromotive force corresponding to the magnetic induction intensity of the inspected strong magnetic field. Calibration of the instrument's coil constant with a standard magnetic field allows the constant to serve as a transfer standard, facilitating ultra-strong magnetic field measurements and calibrations. We examined superconducting strong magnetic fields within the 1-7 T range, providing an in-depth analysis and evaluation of the measuring device and coil constant. Our findings highlight that the measurement bias for the 1-7 T magnetic field is better than 0.083%. The relative uncertainty introduced by our instrument is up to 3×10−4, marking a significant advancement for ultra-strong magnetic field measurements.
  • loading
  • [1]
    匡光力, 邵淑芳. 稳态强磁场实验装置及其科学研究[J]. 现代物理知识, 2018, 30(6): 46-55. doi: 10.13405/j.cnki.xdwz.2018.06.012
    [2]
    韩小涛, 张绍哲, 魏文琦, 等. 平顶脉冲强磁场技术及其应用[J]. 电工技术报, 2022, 37(19): 5021-5034.
    [3]
    Li Z, Ouyang Z, Leng Z, et al. Precise Strong Magnet Measurement Method Based on Magnetic Flux Modulation Principle[J]. Electronics, 2022, 11(6): 970. doi: 10.3390/electronics11060970
    [4]
    张会云. 霍尔效应的发展及应用[J]. 纺织高校基础科学学报, 2002(1): 75-79. doi: 10.3969/j.issn.1006-8341.2002.01.021
    [5]
    刘雪梅. 霍尔效应理论发展过程的研究[J]. 重庆文理学院学报(自然科学版), 2011, 30(2): 41-44.
    [6]
    Stormer H L. Nobel lecture: the fractional quantum Hall effect[J]. Reviews of Modern Physics, 1999, 71(4): 875. doi: 10.1103/RevModPhys.71.875
    [7]
    杨振. 10 T稳态磁场下秀丽隐杆线虫生殖细胞异常及铁离子调控机制研究[D]. 合肥: 中国科学技术大学, 2019.
    [8]
    彭涛, 辜承林. 强磁场发展动态与趋势[J]. 物理, 2004(8): 570-573. doi: 10.3321/j.issn:0379-4148.2004.08.005
    [9]
    匡光力, 邵淑芬. 稳态强磁场技术及科学意义[J]. 科技导报, 2018, 36(19): 93-96.
    [10]
    Ren Y, Kuang G, Chen W. Analysis of the magnetic forces generated in the hybrid magnet being built in China[J]. Journal of Fusion Energy, 2015, 34: 733-738. doi: 10.1007/s10894-015-9876-9
    [11]
    茹宁, 刘小赤, 蒋志远, 等. 基于原子拉比共振的自由空间微波磁场探测研究[J]. 计量技术, 2020(5): 19-24.
    [12]
    Hanai S, Tsuchihashi T, Ioka S, et al. Development of an 11 T BSCCO insert coil for a 25 T cryogen-free superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-6. doi: 10.1109/TASC.2017.2684059
    [13]
    Weijers H W, Markiewicz W D, Gavrilin A V, et al. Progress in the development and construction of a 32-T superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 4300807.
    [14]
    蔡传兵, 池长鑫, 李敏娟, 等. 强磁场用第二代高温超导带材研究进展与挑战[J]. 科学通报, 2019, 64(8): 827-844.
    [15]
    Liu J, Wang Q, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet[J]. Superconductor Science and Technology, 2020, 33(3): 03LT01. doi: 10.1088/1361-6668/ab714e
    [16]
    Yanagisawa Y, Hamada M, Hashi K, et al. Review of recent developments in ultra-high field (UHF) NMR magnets in the Asia region[J]. Superconductor Science and Technology, 2022, 35(4): 044006. doi: 10.1088/1361-6668/ac5644
    [17]
    Dey P, Shukla R, Venkateswarlu D. High magnetic field measurement utilizing Faraday rotation in SF11 glass in simplified diagnostics[J]. Applied Optics, 2017, 56(10): 2873-2877 doi: 10.1364/AO.56.002873
    [18]
    Zhang F, Yan X, Zhang X, et al. Numerical analysis of magnetic field measurement based on Faraday rotation in a no-core tellurite fiber[J]. Optical Fiber Technology, 2021, 63: 102536. doi: 10.1016/j.yofte.2021.102536
    [19]
    王月媖, 许高斌, 王超超, 等. 平面扭转式强磁场测量微传感器的设计与分析[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1352-1356.
    [20]
    Huang Y, Jiang L, Lei H, et al. An improved measurement scheme of the large-caliber steady-state magnetic-field testing system for ITER[J]. AIP Advances, 2021, 11(11): 115125. doi: 10.1063/5.0066136
    [21]
    贺青, 邵海明, 梁成斌. 电磁计量学研究进展评述[J]. 计量学报, 2021, 42(11): 1543-1552. doi: 10.3969/j.issn.1000-1158.2021.11.21
    [22]
    张钟华, 王登安, 胡智. 我国的超导强磁场测试标准[J]. 电测与仪表, 1989, 12: 3-8.
    [23]
    王少华. 磁共振成像仪磁场计量标准及溯源技术研究[D]. 保定: 河北大学, 2014
    [24]
    张杉. 基于线圈旋转法的超导强磁场测量方法研究[D]. 青岛: 青岛大学, 2021.
    [25]
    唐统一. 近代电磁测量[M]. 北京: 中国计量出版社, 1992: 310-315.
    [26]
    黄剑平, 穆瑞珍, 林海峰. 基于电磁感应法的交变磁场测量电路设计[J]. 传感技术学报, 2018, 31(2): 202-206. doi: 10.3969/j.issn.1004-1699.2018.02.008
    [27]
    刘国稳. 数字锁相放大器优化设计与实现[D]. 衡阳: 南华大学, 2016.
    [28]
    Macias-Bobadilla G, Rodríguez-Reséndiz J, Mota-Valtierra G, et al. Dual-phase lock-in amplifier based on FPGA for low-frequencies experiments[J]. Sensors, 2016, 16(3): 379. doi: 10.3390/s16030379
    [29]
    伏吉庆, 张伟, 贺青. 磁感应强度基准技术评述[J]. 计量学报, 2019, 40(4): 700-703. doi: 10.3969/j.issn.1000-1158.2019.04.25
    [30]
    费业泰. 误差理论与数据处理[M]. 第六版. 北京: 机械工业出版社, 2010: 82-88.
    [31]
    倪育才. 实用测量不确定度评定 [M]. 第六版. 北京: 中国标准出版社, 2020: 78-102.
    [32]
    贾伟广, 朱丽萍, 于建清, 等. 电磁海流计实验水槽流场校准技术研究[J]. 计量科学与技术, 2021, 65(4): 45-48.
    [33]
    贾正森, 王磊, 张江涛, 等. 交流约瑟夫森量子电压在电磁计量中的应用[J]. 计量科学与技术, 2020(8): 44-50, 60. doi: 10.3969/j.issn.1000-0771.2020.08.09
    [34]
    沈平子, 贺青, 张钟华, 等. 电磁计量单位制沿革[J]. 计量技术, 2019(5): 36-42, 80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(10)

    Article Metrics

    Article views (280) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return