Volume 68 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
WANG Chenying, JING Weixuan, ZHANG Yaxin, LI Wei, ZHANG Yijun, LI Changsheng, SHI Yushu, JIANG Zhuangde. Development and Metrological Techniques of Nano-Step Height Reference Materials Based on Laser Traceability[J]. Metrology Science and Technology, 2024, 68(2): 52-59. doi: 10.12338/j.issn.2096-9015.2023.0149
Citation: WANG Chenying, JING Weixuan, ZHANG Yaxin, LI Wei, ZHANG Yijun, LI Changsheng, SHI Yushu, JIANG Zhuangde. Development and Metrological Techniques of Nano-Step Height Reference Materials Based on Laser Traceability[J]. Metrology Science and Technology, 2024, 68(2): 52-59. doi: 10.12338/j.issn.2096-9015.2023.0149

Development and Metrological Techniques of Nano-Step Height Reference Materials Based on Laser Traceability

doi: 10.12338/j.issn.2096-9015.2023.0149
  • Received Date: 2023-06-14
  • Accepted Date: 2023-06-27
  • Rev Recd Date: 2023-11-02
  • Available Online: 2023-11-30
  • Publish Date: 2024-02-18
  • With the rapid growth of the semiconductor industry, the demand for high-precision, small-scale three-dimensional nanomanufacturing techniques has increased, necessitating the development of corresponding nanogeometry reference materials. In response, China has independently developed a series of nano-step height reference materials comparable to international standards, achieving traceability to the meter definition through laser wavelength. This initiative has significantly contributed to supporting technological research across various domains, breaking foreign monopolies, enhancing China's nano-geometry value transfer system, and fostering the nano industry's growth. This paper reviews and compares domestic and international research on nano-step height reference materials, summarizing the fabrication methods and metrology techniques. It aims to provide references and insights for future research on nano-step height reference materials and other micro- and nano-geometry reference materials.
  • loading
  • [1]
    GUO B, SUN J, HUA Y, et al. Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications[J]. Nanomanufacturing and Metrology, 2020, 3(1): 26-67. doi: 10.1007/s41871-020-00056-5
    [2]
    IKUMAPAYI O M, AKINLABI E T, ADEOYE A O M, et al. Microfabrication and nanotechnology in manufacturing system-An overview[J]. Materials Today:Proceedings, 2021, 44: 1154-1162. doi: 10.1016/j.matpr.2020.11.233
    [3]
    SEO M H, YOO J Y, JO M S, et al. Geometrically structured nanomaterials for nanosensors, NEMS, and nanosieves[J]. Advanced Materials, 2020, 32(35): 1907082. doi: 10.1002/adma.201907082
    [4]
    Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths[J]. Nature, 2022, 603(7900): 259-264. doi: 10.1038/s41586-021-04323-3
    [5]
    Bunday B D, Orji N G, Allgair J A. High volume manufacturing metrology needs at and beyond the 5 nm node[J]. Proceedings of SPIE, 2021, 11611: 116110F.
    [6]
    Orji N G, Badaroglu M, Barnes B M, et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 2018, 1(10): 532-547. doi: 10.1038/s41928-018-0150-9
    [7]
    Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602. doi: 10.1038/s41586-019-1493-8
    [8]
    王琛英, 景蔚萱, 蒋庄德, 等. 采用HRTEM对石墨烯材料单层厚度测量的研究[J]. 计量学报, 2017, 38(2): 145-148. doi: 10.3969/j.issn.1000-1158.2017.02.04
    [9]
    Postek M T, Vladar A, Ming B, et al. Documentation for reference material (RM)8820: A versatile, multipurpose dimensional metrology calibration standard for scanned particle beam, scanned probe and optical microscopy[EB/OL].https://doi.org/10.6028/NIST.sp.1170.
    [10]
    Raid I, Eifler M, Kusnezowa T, et al. Calibration of Ellipso-Height-Topometry with nanoscale gratings of varying materials[J]. Optik, 2015, 126(23): 4591-4596. doi: 10.1016/j.ijleo.2015.08.093
    [11]
    蒋庄德, 景蔚萱. 纳米测量及纳米样板[J]. 纳米技术与精密工程, 2004, 2(1): 16-19.
    [12]
    蒋庄德, 王琛英, 杨树明. 典型纳米结构制备及其测量表征[J]. 中国工程科学, 2013, 15(01): 15-20,27. doi: 10.3969/j.issn.1009-1742.2013.01.005
    [13]
    高思田, 李琪, 施玉书, 等. 我国微纳几何量计量技术的研究进展[J]. 仪器仪表学报, 2017, 38(8): 1822-1829. doi: 10.3969/j.issn.0254-3087.2017.08.001
    [14]
    高慧芳, 任玲玲. 纳米尺度氧化铪薄膜膜厚标准物质的研制[J]. 计量科学与技术, 2021, 65(1): 61-65,78.
    [15]
    邓晓, 李同保, 程鑫彬. 自溯源光栅标准物质及其应用[J]. 光学精密工程, 2022, 30(21): 2608-2625.
    [16]
    Wang C, Liu D, Zhang Y, et al. High-Efficiency and Reliable Value Geometric Standard: Integrated Periodic Structure Reference Materials[J]. Micromachines, 2023, 14(8): 1550. doi: 10.3390/mi14081550
    [17]
    Koenders L, Bergmans R, Garnaes J, et al. Comparison on nanometrology: nano 2—step height[J]. Metrologia, 2003, 40(1A): 04001. doi: 10.1088/0026-1394/40/1A/04001
    [18]
    VLSI Standards Incorporated. VLSI dimensional products[EB/OL]. http://www.vlsistandards.com/products.
    [19]
    国家标准物质资源共享平台[EB/OL].https://www.ncrm.org.cn.
    [20]
    张雅馨, 王琛英, 景蔚萱, 等. 亚50 nm台阶高度标准物质的可控制备及定值研究[J]. 仪器仪表学报, 2022, 43(11): 86-93.
    [21]
    Wang C Y, Yang S M, Lin Q J, et al. Nanostep Fabrication Using FIB Technology[J]. Journal of Advanced Material Research, 2013, 655: 842-846.
    [22]
    Yang S, Li C, Wang C, et al. A sub-50 nm three-step height sample for AFM calibration[J]. Measurement Science and Technology, 2014, 25(12): 125004. doi: 10.1088/0957-0233/25/12/125004
    [23]
    雷李华, 邹子英, 李源, 等. 纳米台阶标准样板的制备和表征[J]. 微纳电子技术, 2011, 48(09): 600-605.
    [24]
    冯亚南, 李锁印, 韩志国, 等. 微纳米台阶标准的制备和评价[J]. 传感技术学报, 2022, 35(11): 1445-1450.
    [25]
    王琛英, 杨树明, 李常胜, 等. 基于原子层沉积的Al2O3薄膜微观形貌研究[J]. 稀有金属材料与工程, 2015, 44(12): 3078-3082.
    [26]
    Danzebrink H U, Koenders L, Wilkening G, et al. Advances in scanning force microscopy for dimensional metrology[J]. CIRP annals, 2006, 55(2): 841-878. doi: 10.1016/j.cirp.2006.10.010
    [27]
    施玉书, 李伟, 余茜茜, 等. 基于原子力显微术的5 nm台阶高度标准物质溯源与定值技术研究[J]. 仪器仪表学报, 2020, 41(3): 79-86.
    [28]
    国家质量监督检验检疫总局. 产品几何量技术规范(GPS) 表面结构: 轮廓法, 第1部分: 实物测量标准: GB/T 19067.1-2003/ISO 5436.1: 20007[S]. 北京: 中国标准出版社, 2003.
    [29]
    国家质量监督检验检疫总局. 扫描探针显微镜校准规范: JJF 1351-2012[S]. 北京: 中国质检出版社, 2012.
    [30]
    国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1-2012[S]. 北京: 中国质检出版社, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (154) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return