Volume 68 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
WANG Fang, SHI Yushu, ZHANG Shu. Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants[J]. Metrology Science and Technology, 2024, 68(2): 10-15, 59. doi: 10.12338/j.issn.2096-9015.2023.0150
Citation: WANG Fang, SHI Yushu, ZHANG Shu. Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants[J]. Metrology Science and Technology, 2024, 68(2): 10-15, 59. doi: 10.12338/j.issn.2096-9015.2023.0150

Development of a 22 Nano Line Width Standard Based on Intrinsic SiliconLattice Constants

doi: 10.12338/j.issn.2096-9015.2023.0150
  • Received Date: 2023-06-18
  • Accepted Date: 2023-06-26
  • Rev Recd Date: 2023-12-20
  • Available Online: 2023-12-28
  • Publish Date: 2024-02-18
  • The measurement accuracy of nano line widths, a critical nano geometric characteristic parameter, is of paramount importance in fields such as advanced manufacturing. As the scale of nanotechnology continues to shrink, achieving sub-nanometer measurement accuracy presents new challenges. The 26th General Conference on Weights and Measures (CGPM) in 2018 proposed using the silicon {220} lattice spacing as a secondary realization of the meter, providing a novel approach for atomic-level nano line width measurements. In this study, a 22 nm intrinsic silicon lattice line width standard was developed using multi-layer film deposition technology. Employing high-resolution transmission electron microscopy (HRTEM), the silicon lattice constant within the standard was used as a scale for direct nano line width measurement. The measurement uncertainty achieved is better than 1 nm.
  • loading
  • [1]
    CCL. Mise en pratique for the definition of the metre in the SI [R]. 2019.
    [2]
    CCL-GD-MeP-1. Recommendations of CCL/WG-N on: Realization of the SI metre using silicon lattice parameter and x-ray interferometry for nanometre and sub-nanometre scale applications in dimensional nanometrology [R]. 2019.
    [3]
    CCL-GD-MeP-2. Recommendations of CCL/WG-N on: Realization of SI metre using silicon lattice and Transmission Electron Microscopy for Dimensional Nanometrology[R]. 2019.
    [4]
    Wu Z R, Cai Y N, Wang X R, et al. Amorphous Si critical dimension structures with direct Si lattice calibration[J]. Chinese Physics B, 2019, 28(3): 030601. doi: 10.1088/1674-1056/28/3/030601
    [5]
    Hoefflinger B. Chips 2020 [M]. The Frontiers Collection. Springer, Berlin, Heidelberg, 2011: 161-174.
    [6]
    E Massa, G Mana, U Kuetgens, et al. Measurement of the lattice parameter of a silicon crystal[J]. New Journal of Physics, 2009, 11: 053013. doi: 10.1088/1367-2630/11/5/053013
    [7]
    E Massa, G Mana, U Kuetgens, et al. Measurement of the {220} lattice-plane spacing of a 28Si x-ray interferometer[J]. Metrologia, 2011, 48: S37-S43. doi: 10.1088/0026-1394/48/2/S06
    [8]
    Luca Ferroglio, Giovanni Mana, and Enrico Massa. Si lattice parameter measurement by centimeter X-ray interferometry[J]. OPTICS EXPRESS, 16(21): 16877-16888.
    [9]
    E Massa, G Mana, and U Kuetgens. Comparison of the INRIM and PTB lattice-spacing standards[J]. Metrologia, 2009, 46(3): 249. doi: 10.1088/0026-1394/46/3/011
    [10]
    A. Bergamin, G. Cavagnero, G. Mana, et al. Scanning X-ray interferometry and the silicon lattice parameter: towards 10−9 relative uncertainty?[J]. THE EUROPEAN PHYSICAL JOURNAL B, 1999, 9: 225-232.
    [11]
    崔建军. 基于Fabry-Perot干涉与原子晶格间距的微位移计量及溯源研究 [D]. 天津: 天津大学, 2014.
    [12]
    Ernest G K, Szabo C I, Cline J P, et al. The lattice spacing variability of intrinsic float-zone silicon[J]. Journal of Research of the National Institute of Standards and Technology, 2017, 122: 24. doi: 10.6028/jres.122.024
    [13]
    Gaoliang Dai, XiukunHu, and Johannes Degenhardt. Bottom-up approach for traceable calibration of tip geometry of stylus profilometer[J]. Surface Topography:Metrology and Properties, 2022, 10: 015018. doi: 10.1088/2051-672X/ac4f36
    [14]
    Keita Kobayashi, Ichiko Misumi, and Kazuhiro Yamamoto. Experimental evaluation of uncertainty in sub- nanometer metrology using transmission electron microscopy due to magnification variation[J]. Measurement Science and Technology, 2021, 32: 095011. doi: 10.1088/1361-6501/ac03e4
    [15]
    Harald Bosse, Bernd Bodermann, Gaoliang Dai, et al. Challenges in naonometroloy: high precision measurement of position size[J]. Technisches Messen, 2015, 82(7-8): 346-358. doi: 10.1515/teme-2015-0002
    [16]
    R. G. Dixson, R. A. Allen, W. F. Guthrie, et al. Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty[J]. Journal of Vacuum Science & Technology B, 2005, 23(6): 3028-3032.
    [17]
    Gaoliang Dai, Kai Hahm, Frank Scholze. Measurements of CD and sidewall profile of EUV photomask structures using CD-AFM and tilting-AFM[J]. Measurement Science and Technology, 2014, 25: 044002. doi: 10.1088/0957-0233/25/4/044002
    [18]
    Dai G L, Zhu F, Heidelmann M, et al. Development and characterisation of a new line width reference material[J]. Measurement Science and Technology, 2015, 26: 115006. doi: 10.1088/0957-0233/26/11/115006
    [19]
    Guthrie W F, Dixson R G, Allen R, et al. RM 8111: development of a prototype linewidth standard[J]. Journal of Research of the National Institute of Standards and Technology, 2006, 111(3): 187-203. doi: 10.6028/jres.111.016
    [20]
    Orji N G, Dixson R G, Garcia-Gutierrez D I, et al. TEM calibration methods for critical dimension standards[J]. Metrology, Inspection, and Process Control for Microlithography XXI, 2007, 6518: 651810. doi: 10.1117/12.713368
    [21]
    Dai G L, Hahm K, Bosse H, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017, 28: 065010. doi: 10.1088/1361-6501/aa665b
    [22]
    高思田, 李琪, 施玉书, 等. 我国微纳几何量计量技术的研究进展[J]. 仪器仪表学报, 2017, 38(8): 1822-1829. doi: 10.3969/j.issn.0254-3087.2017.08.001
    [23]
    施玉书, 李伟, 余茜茜, 等. 基于原子力显微术的5 nm台阶高度标准物质溯源与定值技术研究[J]. 仪器仪表学报, 2020, 41(3): 79-86.
    [24]
    Yushu Shi, Wei Li, Sitian Gao, et al. Atomic force microscope scanning head with 3-dimensional orthogonal scanning to eliminate the curved coupling[J]. Ultramicroscopy, 2018, 190: 77-80. doi: 10.1016/j.ultramic.2018.03.020
    [25]
    Wang F, Shi Y S, Li W, et al. Characterization of a nano line width reference material based on metrological scanning electron microscope[J]. Chin. Phys. B, 2022, 31(5): 050601. doi: 10.1088/1674-1056/ac3225
    [26]
    Fang Wang, Yushu Shi, Shu Zhang, et al. Automatic Measurement of Silicon Lattice Spacings in High-Resolution ransmission Electron Microscopy Images Through 2D Discrete Fourier Transform and Inverse Discrete Fourier Transform[J]. Nanomanufacturing and Metrology, 2022, 2: 119-126.
    [27]
    Joachim Mayer, Lucille A. Giannuzzi, Takeo Kamino, et al. TEM Sample Preparation and FIB-Induced Damage[J]. MRS BULLETIN, 2007, 32: 400-407. doi: 10.1557/mrs2007.63
    [28]
    周伟敏, 徐南华. 聚焦离子束( FIB) 快速制备透射电镜样品[J]. 电子显微学报, 2004, 23(4): 513. doi: 10.3969/j.issn.1000-6281.2004.04.211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (118) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return