Volume 67 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
DU Chao, SONG Wenxia, CHEN Weiliang, LIU Kun, ZHENG Fasong, DAI Shaoyang, ZUO Yani, FANG Fang. Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock[J]. Metrology Science and Technology, 2023, 67(7): 40-44. doi: 10.12338/j.issn.2096-9015.2023.0190
Citation: DU Chao, SONG Wenxia, CHEN Weiliang, LIU Kun, ZHENG Fasong, DAI Shaoyang, ZUO Yani, FANG Fang. Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock[J]. Metrology Science and Technology, 2023, 67(7): 40-44. doi: 10.12338/j.issn.2096-9015.2023.0190

Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock

doi: 10.12338/j.issn.2096-9015.2023.0190
  • Received Date: 2023-08-16
  • Accepted Date: 2023-08-31
  • Rev Recd Date: 2023-09-01
  • Available Online: 2023-09-08
  • Publish Date: 2023-07-18
  • The Rapid Steering Fountain Clock is a frequency reference device pivotal for steering hydrogen maser time-keeping. To fulfill time-keeping demands, enhancing the operational reliability and stability of the rapid-steering fountain clock is crucial. The optical system, being the most vulnerable component, is susceptible to environmental factors like temperature, causing fluctuations in atomic cloud temperature and atomic number, thereby deteriorating frequency stability. This study proposes a miniaturized optical system for the rapid-steering fountain clock, achieved by lowering light height, minimizing light path, reducing elastic adjustment frames, and optimizing optical path layout. Utilizing new designs such as waveplate polarizing beamsplitter combination, vertically positioned acousto-optic modulator, and double-pass through cat-eye acousto-optic modulator, all optical devices are integrated onto a 400mm×600mm optical bench with a standard 25 mm hole spacing. The entire optical system, wrapped in foam, underwent temperature fluctuation testing, revealing that with a 12 ℃ temperature change, the optical power fluctuation post-optical fiber in the longest optical path is below 6.6%, significantly improving the compactness and stability of the fountain clock optical system. When applied to the rapid-steering rubidium fountain clock, a daily atomic number fluctuation of 5.28% and a fountain clock frequency daily stability of 5.57E-16 were achieved.
  • loading
  • [1]
    王义遒. 原子的激光冷却与陷俘[M]. 北京: 北京大学出版社, 2007: 342-343.
    [2]
    Chu S, Hollberg, L, Bjorkholm J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985(55): 48-51.
    [3]
    Metcalf H J , Straten P V D . Laser Cooling and Trapping[M]. Berlin : Springer: 71-175.
    [4]
    Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping[J]. Physical Review Letters, 1988, 61(7): 826-829. doi: 10.1103/PhysRevLett.61.826
    [5]
    Lett P. D. , Phillips W. D. , Rolston S. L. , et al. , Optical molasses[J]. Journal of Optical Society of America B, 1989, 6(11): 2084-2107.
    [6]
    Ramsey N F. A Molecular Beam Resonance Method with Separated Oscillating Fields[J]. Phys. Rev. , 1950, 78(6): 695-699. doi: 10.1103/PhysRev.78.695
    [7]
    Haroche S, Brune M, Raimond J M. Atomic clocks for controlling light fields[J]. Physics Today, 2013, 66(1): 27-32. doi: 10.1063/PT.3.1856
    [8]
    翟造成, 张为群, 蔡勇. 原子钟基本原理与时频测量技术[M]. 上海: 上海科技文献出版社, 2009.
    [9]
    Weyers S, Bauch A, Hubner U, et al. First performance results of PTB’s atomic caesium fountain and a study of contributions to its frequency instability[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000, 47(2): 432-437. doi: 10.1109/58.827431
    [10]
    Clarion A, Laurent P, Stantarelli G, et al. A cesium fountain frequency standard: preliminary results[J]. IEEE Transactions on Instrumentation and Measurement, 1995, 44(2): 128-131. doi: 10.1109/19.377790
    [11]
    Gerginov V, Nemitz N, Weyers S, et al. Uncertainty evaluation of the caesium fountain clock PTB-CSF2[J]. Metrologia, 2010, 47(1): 65-79. doi: 10.1088/0026-1394/47/1/008
    [12]
    Guéna J, Abgrall M, Rovera D, et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2012, 59(3): 391-409.
    [13]
    Szymaniec K, Park S E, Marra G, et al. First accuracy evaluation of the NPL-CsF2 primary frequency standard[J]. Metrologia, 2010, 47: 363-376. doi: 10.1088/0026-1394/47/4/003
    [14]
    Levi F, Calonico D, Calosso C E, et al. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain[J]. Metrologia, 2014, 51(3): 270-284. doi: 10.1088/0026-1394/51/3/270
    [15]
    Fang F, Li M S, Lin P W, et al. NIM5 Cs fountain clock and its evaluation[J]. Metrologia, 2015, 52(4): 454-468. doi: 10.1088/0026-1394/52/4/454
    [16]
    阮军, 王叶兵, 常宏, 等. 时间频率基准装置的研制现状[J]. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [17]
    阮军, 王心亮, 刘丹丹, 等. 铯原子喷泉钟NTSC-F1研制进展[J]. 时间频率学报, 2016(3): 138-149. doi: 10.13875/j.issn.1674-0637.2016-03-0138-12
    [18]
    Blinov I Y, Boiko A I, Domnin Y S, et al. Budget of uncertainties in the cesium frequency Frame of fountain type[J]. Measurement Techniques, 2017, 60(1): 30-36. doi: 10.1007/s11018-017-1145-z
    [19]
    Jallageas A, Devenoges L, Petersen M, et al. First uncertainty evaluation of the FoCS-2 primary frequency standard[J]. Metrologia, 2018, 55(3): 366-385. doi: 10.1088/1681-7575/aab3fa
    [20]
    Bauch A, Weyers S, Piester D, et al. Generation of UTC(PTB) as a fountain-clock based time scale[J]. Metrologia, 2012, 49(3): 180. doi: 10.1088/0026-1394/49/3/180
    [21]
    Rovera G D, Bize S, Chupin B, et al. UTC(OP) based on LNE-SYRTE atomic fountain primary frequency standards[J]. Metrologia, 2016, 53(3): S81-S88. doi: 10.1088/0026-1394/53/3/S81
    [22]
    Bandi T, Affolderbach C, Calosso C E, et al. High-performance laser-pumped rubidium frequency standard for satellite navigation[J]. Electronics Letters, 2011, 47(12): 698-699. doi: 10.1049/el.2011.0389
    [23]
    McGrew W F, Zhang X, Leopardi H, et al. Towards adoption of an optical second: Verifying optical clocks at the SI limit[J]. Optica, 2019, 6(4): 448-454. doi: 10.1364/OPTICA.6.000448
    [24]
    Wolf P, Chapelet F, Bize S, et al. Cold atom clock test of Lorentz invariance in the matter sector[J]. Physical Review Letters, 2006, 96(6): 060801. doi: 10.1103/PhysRevLett.96.060801
    [25]
    Chen W L, Fang F, Liu K, et al. , Development of Rb fountain clock for time keeping[J]. Frontiers Phys. , 2022, 2022: 796.
    [26]
    曾德灵, 陈静, 郭芮君, 等. 钟组守时性能分析[J]. 计量科学与技术, 2022, 66(4): 114-119, 62.
    [27]
    PEIL S, HANSSEN J, SWANSON T B, et al. The USNO rubidium fountains[J]. Journal of Physics: Conference Series, 2016(723): 012004.
    [28]
    房芳, 张爱敏, 林弋戈, 等. 时间: 天文时-原子秒-基于常数重新定义秒[J]. 中国科学: 物理学 力学 天文学, 2021, 51(7): 105-115.
    [29]
    房芳, 张爱敏, 李天初. 时间: 从天文时到原子秒[J]. 计量技术, 2019(5): 7-10.
    [30]
    陈伟亮, 房芳, 袁小迪, 等. NIM6铯喷泉钟背景气体碰撞频移的评估[J]. 计量技术, 2020(5): 11-13, 6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (146) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return