Volume 67 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
MENG Haifeng, WANG Meng, DAI Yuanting, ZHANG Junchao, WEI Zhiheng, XIONG Limin. In-Situ Spectral Measurement and Study of Pantograph-Catenary Arcing in Subway Systems[J]. Metrology Science and Technology, 2023, 67(9): 56-60, 48. doi: 10.12338/j.issn.2096-9015.2023.0228
Citation: MENG Haifeng, WANG Meng, DAI Yuanting, ZHANG Junchao, WEI Zhiheng, XIONG Limin. In-Situ Spectral Measurement and Study of Pantograph-Catenary Arcing in Subway Systems[J]. Metrology Science and Technology, 2023, 67(9): 56-60, 48. doi: 10.12338/j.issn.2096-9015.2023.0228

In-Situ Spectral Measurement and Study of Pantograph-Catenary Arcing in Subway Systems

doi: 10.12338/j.issn.2096-9015.2023.0228
  • Received Date: 2023-10-10
  • Accepted Date: 2023-11-08
  • Rev Recd Date: 2023-11-09
  • Available Online: 2023-11-16
  • Publish Date: 2023-09-18
  • To enhance the dynamic and performance testing of subway pantograph-catenary systems, particularly in the standard measurement of arcing, a fiber optic spectrometer-based in-situ spectral testing system has been developed. This system is designed for real-time measurement of the characteristic spectra of spontaneous and intermittent arcing in subway operations. This paper presents the design and laboratory wavelength calibration of the subway pantograph-catenary arcing spectral in-situ testing system. Subsequently, real-time experiments were conducted at subway operation sites. By using in-situ measurement data from a specific Beijing subway line and integrating train operation monitoring parameters, the characteristic spectra of pantograph-catenary arcing were extracted and analyzed. The results indicate distinct spectral features of subway arcing, differing from natural sunlight and ordinary lighting, in the range of 220–225 nm with a peak wavelength at 224.6 nm. These findings provide empirical data to address discrepancies in spectral characteristic wavelengths between international and national standards and academic papers, offering significant guidance for the selection, development, and calibration of China’s subway pantograph-catenary arcing monitoring systems.
  • loading
  • [1]
    周宁, 蔚超, 谭梦颖, 等. 弓网系统动态及受流性能测试技术研究及应用[J]. 铁道学报, 2020, 42(3): 47-54. doi: 10.3969/j.issn.1001-8360.2020.03.006
    [2]
    吴燕, 吴俊勇, 郑积浩, 等. 高速受电弓-接触网动态受流性能及双弓距离的研究[J]. 铁道学报, 2010, 32(4): 38-43. doi: 10.3969/j.issn.1001-8360.2010.04.008
    [3]
    王黎, 高晓蓉, 赵全轲, 等. 弓网系统的动态检测及研究[J]. 铁道学报, 1999, 21(2): 105-109. doi: 10.3321/j.issn:1001-8360.1999.02.024
    [4]
    徐旻, 刘文正, 伊金浩, 等. 受电弓离线过程弓网电弧电气特性研究[J]. 铁道标准设计, 2021, 65(2): 147-153. doi: 10.13238/j.issn.1004-2954.202001060005
    [5]
    王英, 刘志刚, 范福强, 等. 弓网电弧模型及其电气特性的研究进展[J]. 铁道学报, 2013, 35(8): 35-43. doi: 10.3969/j.issn.1001-8360.2013.08.006
    [6]
    王万岗, 吴广宁, 高国强, 等. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4): 22-27. doi: 10.3969/j.issn.1001-8360.2012.04.004
    [7]
    李希炜, 朱峰. 武广高速铁路轨旁电磁干扰实测及分析[J]. 铁道标准设计, 2014, 58(9): 121-124. doi: 10.13238/j.issn.1004-2954.2014.09.030
    [8]
    丁心志, 刘柱揆, 严跃, 等. 电弧光光谱成分特性及其应用分析[J]. 电气工程学报, 2015, 10(5): 75-81. doi: 10.11985/JEE.2015.05.008
    [9]
    工业和信息化部. 铜及铜合金分析方法 火花放电原子发射光谱法 : YS/T 482-2022 [S]. 北京: 中国标准出版社, 2022.
    [10]
    吴琛, 伍川辉, 杨恒, 等. 基于LabVIEW图像处理的弓网拉弧在线监测研究[J]. 铁道标准设计, 2018, 62(9): 145-148. doi: 10.13238/j.issn.1004-2954.201711210005
    [11]
    刘宝轩, 陈唐龙, 于龙, 等. 地铁弓网燃弧能量检测与牵引电流扰动分析[J]. 铁道学报, 2015, 37(3): 8-13. doi: 10.3969/j.issn.1001-8360.2015.03.002
    [12]
    马成. 基于燃弧检测装置的弓网受流质量试验分析 [D]. 成 都: 西南交通大学, 2013.
    [13]
    卢兵, 于龙, 张冬凯. 弓网燃弧检测装置定标及其最小功率密度测量[J]. 电子测量与仪器学报, 2016, 30(3): 328-388. doi: 10.13382/j.jemi.2016.03.007
    [14]
    张士奎, 周兴无, 姜保林. 基于紫外脉冲原理的地铁弓网燃弧检测系统研究[J]. 现代城市轨道交通, 2013(3): 29-33. doi: 10.3969/j.issn.1672-7533.2013.02.011
    [15]
    毛玉伟. 基于紫外光信号的弓网电弧强度检测装置的研究 [D]. 北京: 北京交通大学, 2019.
    [16]
    于晓英, 苏宏升. 基于PMT电压一次积分值的城轨弓网电弧检测系统[J]. 铁道学报, 2019, 41(9): 41-51. doi: 10.3969/j.issn.1001-8360.2019.09.007
    [17]
    代富强. 城市轨道交通弓网燃弧检测与分析[J]. 现代城市轨道交通, 2014(3): 89-92. doi: 10.3969/j.issn.1672-7533.2014.03.023
    [18]
    金光. 城市轨道交通弓网燃弧现象分析及试验研究[J]. 电气化铁道, 2014(1): 44-47. doi: 10.3969/j.issn.1007-936X.2014.01.012
    [19]
    王婧, 张文轩, 杨志鹏, 等. 一种弓网燃弧模拟装置及其控制方法: CN202210187862.4[P]. 2023-11-09.
    [20]
    EUROPEAN STANDARD. Railway applications -- Current collection systems --Requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line : BS EN 50317: 2012 [S]. London: BSI Standards Limited, 2012.
    [21]
    国家质量监督检疫总局. 轨道交通 受流系统 受电弓与接触网动态相互作用测量的要求和验证: GB/T 32592-2016 [S]. 北京: 中国标准出版社, 2016.
    [22]
    雷栋, 张婷婷, 段绪伟, 等. 列车运行速度对弓网电弧电气特性的影响研究[J]. 铁道学报, 2019, 41(7): 50-56. doi: 10.3969/j.issn.1001-8360.2019.07.007
    [23]
    景所立, 魏隆, 陈欢, 等. 低气压环境电气化铁路弓网电弧放电特性研究[J]. 铁道标准设计, 2022, 66(6): 138-145.
    [24]
    冯国进, 甘海勇, 赫英威, 等. 一种基于谱线灯组的高精度光谱仪波长标定装置: CN201721657440. X [P]. 2017-12-01.
    [25]
    孙若端, 赫英威, 刘欣萌. 光栅单色仪波长校准装置可计量性设计研究[J]. 计量科学与技术, 2023, 67(6): 3-8. doi: 10.12338/j.issn.2096-9015.2023.0134
    [26]
    熊利民, 林延东, 霍超, 等. 200~400 nm波段光电探测器光谱响应度测量装置研究[J]. 计量技术, 2008, 52(2): 13-17.
    [27]
    INTERNATIONAL STANDARD. Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data: IEC 60904-2-2015 [S]. Geneva: International Electrotechnical Commission. 2019.
    [28]
    赵伟强, 刘慧, 闫劲云, 等. 近紫外 LED 总辐射通量测量比较研究[J]. 计量科学与技术, 2022, 66(5): 25-28.
    [29]
    王彦飞, 代彩红, 许超群, 等. 紫外 LED 计量标准装置的建立[J]. 计量科学与技术, 2022, 66(4): 74-79.
    [30]
    孟海凤, 熊利民, 张俊超, 等. 弓网燃弧检测装置的标定系统: CN 115508762. A [P]. 2022-12-23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (123) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return