Volume 68 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Xudong, WANG Fangbiao, WEN Zitong, GAO Hongtang, LIU Xiangbin. End Standards Measurement[J]. Metrology Science and Technology, 2024, 68(2): 88-94. doi: 10.12338/j.issn.2096-9015.2023.0233
Citation: ZHANG Xudong, WANG Fangbiao, WEN Zitong, GAO Hongtang, LIU Xiangbin. End Standards Measurement[J]. Metrology Science and Technology, 2024, 68(2): 88-94. doi: 10.12338/j.issn.2096-9015.2023.0233

End Standards Measurement

doi: 10.12338/j.issn.2096-9015.2023.0233
  • Received Date: 2023-10-17
  • Accepted Date: 2023-11-10
  • Rev Recd Date: 2023-12-01
  • Available Online: 2023-12-08
  • Publish Date: 2024-02-18
  • End standards measurement is a fundamental aspect of geometric metrology. Extensive research has been conducted on the high-precision measurement of gauge blocks, gauge block pairs, and step height gauges both domestically and internationally. Gauge block measurement methods are divided into comparison and absolute interference methods. The comparison method involves a high-precision gauge block comparator, utilizing a probe with high positioning repeatability and interference comparison technology, achieving a measurement uncertainty of 0.04 μm+0.4×10−6L. The absolute interferometry method discusses the principle and historical development of gauge block absolute interferometry in China. This method encompasses both single-ended and double-ended gauge block interferometry techniques, leading to the development of single-ended phase shifting and double-ended phase shifting gauge block interferometers. These devices attain a measurement uncertainty of 15 nm+0.15×10−6L. Research on phase shifting interferometers laid the foundation for gauge block pair and step height gauge measurements. High precision measurement of gauge block pairs was achieved under specified conditions determined through uncertainty analysis and experimental validation, with measurement uncertainty not exceeding 10 nm. Single-ended phase shifting interferometers enable high-precision measurement of step height gauges, with center height measurement uncertainty reaching (0.01~0.1) µm. To meet ultra-high precision length measurement needs, research on ultra-high precision interferometry technology is identified as the future trend in end standards measurement. Existing single-ended and double-ended phase shifting interferometry technologies pave the way for developing ultra-high precision interferometers, thereby achieving nanoscale measurement uncertainty in end standards measurement.
  • loading
  • [1]
    张旭东, 刘香斌, 吴月艳. 量块测量技术进展[J]. 计量学报, 2017, 38(S1): 1-5.
    [2]
    张旭东, 刘香斌, 吴月艳. 高精度双测头量块比较仪的研究[J]. 计量学报, 2010, 031(0z2): 131-134. doi: 10.3969/j.issn.1000-1158.2010.z2.31
    [3]
    BUCHTA Z, SARBORT M, CIZEK M, et al. System for automatic gauge block length measurement optimized for secondary length metrology[J]. Precision Engineering, 2017, 49: 322-331. doi: 10.1016/j.precisioneng.2017.03.002
    [4]
    Meiners-Hagen K, Schodel R, Pollinger F, et al. Multi-Wavelength Interferometry for Length Measurements Using Diode Lasers[J]. Measurement science review, 2009, 9(1): 16-26.
    [5]
    Bitou Y, Hirai A, Yoshimori H, et al. Gauge block interferometer using three frequency-stabilized lasers[J]. SPIE, 2001, 68(4): 542-547.
    [6]
    J Diz-Bugarin, BV Dorrio, Blanco J, et al. Design of an interferometric system for gauge block calibration[J]. Optical Engineering, 2013, 52(4): 5601.
    [7]
    Lassila A, Byman V. Wave front and phase correction for double-ended gauge block interferometry[J]. Metrologia, 2015, 52(5): 708 doi: 10.1088/0026-1394/52/5/708
    [8]
    Abdelaty A, Walkov A, Franke P, et al. Challenges on double ended gauge block interferometry unveiled by the study of a prototype at PTB[J]. Metrologia, 2012, 49(49): 307-314.
    [9]
    Abdel-Maaboud N F. Automated Contactless Gauge Block Interferometer[J]. Journal of Physical Science, 2017, 28(1): 87-98. doi: 10.21315/jps2017.28.1.7
    [10]
    Bitou Y, Hosoya H, Mashimo K. Uncertainty reducing method for the reference standards in gauge block comparator calibration[J]. Measurement, 2014, 50: 293-296. doi: 10.1016/j.measurement.2014.01.001
    [11]
    刘香斌, 陈建军, 吴月艳, 等. 量块比较测量的不确定度评定[J]. 计量技术, 2015(4): 74-77.
    [12]
    何晓延, 权李方, 王兴东. 测长机检定四等大尺寸量块测量不确定度分析[J]. 计量与测试技术, 2013, 40(3): 60-61. doi: 10.3969/j.issn.1004-6941.2013.03.031
    [13]
    Decker J E, Ulrich A, Pekelsky J R. Uncertainty of Gauge Block Calibration by Mechanical Comparison: A Worked Example for Like Materials[J]. Ncsli Measure, 2008, 3(4): 30-42. doi: 10.1080/19315775.2008.11721445
    [14]
    张旭东, 刘香斌, 叶孝佑, 等. 接触式定位控制传感器的研究[J]. 计量学报, 2009, 30(Z1): 189-191. doi: 10.3969/j.issn.1000-1158.2009.z1.049
    [15]
    Byman V, Lassila A. MIKES' primary phase stepping gauge block interferometer[J]. Measurement Science & Technology, 2015, 26(8): 084009.
    [16]
    邵宏伟, 刘香斌, 王雁, 等. 一等大量块(125~1000 mm)检定装置[J]. 计量学报, 2004, 25(3): 198-202. doi: 10.3321/j.issn:1000-1158.2004.03.002
    [17]
    张旭东, 刘香斌, 党爱华, 等. 基于热电偶的温度测量系统的不确定度[C]. 中国计量测试学会几何量专业委员会年会, 2006.
    [18]
    张旭东, 刘香斌, 吴月艳, 等. 新型一等大量块标准装置的研制[J]. 计量学报, 2014, 35(6A): 67-71. doi: 10.3969/j.issn.1000-1158.2014.z1.015
    [19]
    张旭东, 刘香斌, 王世婕, 等. 新型一等移相量块干涉仪的研制[J]. 计量学报, 2017, 38(3): 257-261. doi: 10.3969/j.issn.1000-1158.2017.03.01
    [20]
    Kruger O, Hungwe F, Farid N, et al. The design of a double ended interferometer (DEI)[J]. International Journal of Metrology & Quality Engineering, 2014, 5(4): 335-350.
    [21]
    Y ISHII, S SEINO. New method for interferometric measurement of gauge blocks without wringing onto a platen[J]. Metrologia, 1998, 35(2): 67-73. doi: 10.1088/0026-1394/35/2/1
    [22]
    Lassila, A, Byman, et al. Wave front and phase correction for double-ended gauge block interferometry[J]. Metrologia: International Journal of Scientific Metrology, 2015, 52(5): 708-716.
    [23]
    Godina A, Acko B, Druzovec M. New approach to uncertainty evaluation in the calibration of gauge block comparators[J]. Measurement, 2007, 40(6): 607-614. doi: 10.1016/j.measurement.2006.09.010
    [24]
    吴月艳, 张旭东, 刘香斌. 一种减小比较仪溯源标准不确定度的新方法[J]. 计量学报, 2008, B09(Z1): 154-156.
    [25]
    Oliveira W, França R S. A new Automated gauge block pair length difference calibration and associated uncertainty sources[C]. 3rd International Congress on Mechanical Metrology, 2015.
    [26]
    Hibino K, Tani Y, Takatsuji T, et al. Absolute interferometry for surface shapes with large steps by wavelength tuning with a mechanical phase shift[C]. Conference on Interferometry. National Institute of Advanced Industrial Science, Technology (AIST), Tsukuba, 305-8564 Japan, 2006.
    [27]
    Schodel R, Walkov A, Zenker M, et al. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures[J]. Measurement Science & Technology, 2012, 23(9): 1425-1437.
    [28]
    Dongxu WU, Fengzhou FANG. Development of surface reconstruction algorithms for optical interferometric measurement[J]. Frontiers of Mechanical Engineering, 2021, 16(1): 1-31 doi: 10.1007/s11465-020-0602-6
    [29]
    Bartl G, Schodel R. Scanning phase shift interferometry in length measurement[EB/OL]. [2013-06-03].https://oar.ptb.de/files/download/810.20130620G.pdf.
    [30]
    Schodel R, Fischedick M. Proposed extension of double-ended gauge block interferometers for measuring spheres[J]. Measurement Science & Technology, 2021, 32(8): 084010-1-084010-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (132) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return