Volume 67 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHANG Huiru, LIN Haoyu, HE Zibin, LU Runxi, XING Hao, WANG Biyun, WANG Ziyue. Experimental Design for Verifying the Time-Frequency Domain Performance of Specular Single Cone Electric Field Standard Devices[J]. Metrology Science and Technology, 2023, 67(8): 43-47, 60. doi: 10.12338/j.issn.2096-9015.2023.0234
Citation: ZHANG Huiru, LIN Haoyu, HE Zibin, LU Runxi, XING Hao, WANG Biyun, WANG Ziyue. Experimental Design for Verifying the Time-Frequency Domain Performance of Specular Single Cone Electric Field Standard Devices[J]. Metrology Science and Technology, 2023, 67(8): 43-47, 60. doi: 10.12338/j.issn.2096-9015.2023.0234

Experimental Design for Verifying the Time-Frequency Domain Performance of Specular Single Cone Electric Field Standard Devices

doi: 10.12338/j.issn.2096-9015.2023.0234
  • Received Date: 2023-10-18
  • Accepted Date: 2023-10-30
  • Rev Recd Date: 2023-11-02
  • Available Online: 2023-11-09
  • Publish Date: 2023-08-18
  • This study proposes a method to verify the time domain and frequency domain performance of specular single cone electric field standard devices, drawing on an analysis of relevant international and domestic standards and research. In the time domain, pulse waveform parameters (amplitude, rise time, pulse width) of the transient electromagnetic pulse electric fields generated by both the specular single cone electric field standard device and the TEM chamber are compared. In the frequency domain, the comparison is made between the continuous-wave electric field strengths generated by the specular single cone device and the μTEM chamber. The En value is employed to assess the comparison results in both time and frequency domain performance verifications. This research, focusing on the development of a time-frequency domain performance verification method for specular single cone electric field standard devices, addresses the challenges in verifying both time and frequency domain performances of these devices. It is crucial for ensuring the accuracy of pulse electric field measurements in China and for harmonizing the transient pulse electric field parameters.
  • loading
  • [1]
    吴昊. 窄脉冲强电场的光学传感技术[D]. 成都: 电子科技大学, 2022.
    [2]
    李跃波, 黄刘宏, 杨杰, 等. 军事设施电磁脉冲易损性评估关键技术能力需求分析[J]. 防护工程, 2023, 45(4): 68-73. doi: 10.3969/j.issn.1674-1854.2023.04.011
    [3]
    周宁. 关于计量科学技术发展若干问题的思考[J]. 计测技术, 2022, 42(1): 1-8.
    [4]
    彭博, 王淞宇, 齐万泉, 等. 基于电光调制技术的脉冲场强校准方法[J]. 宇航计测技术, 2023, 43(1): 17-21.
    [5]
    蒋廷勇, 王晓嘉, 周恒, 等. 电阻阵列加载单锥TEM室研究[J]. 计量学报, 2022, 43(11): 1501-1505. doi: 10.3969/j.issn.1000-1158.2022.11.17
    [6]
    姜云升. 瞬态强电磁脉冲场测量关键技术研究[D]. 北京: 清华大学, 2021.
    [7]
    王少华, 刘科, 杨丽, 等. 100MHz~18GHz混响室场均匀性测试及分析[J]. 计量技术, 2018(12): 23-26.
    [8]
    Sakharov K Y, Mikheev O V, Turkin V A. National Standard of Russian Federation for reproduction and transmission of unit sizes of pulse electric and magnetic intensities in uhrawide band range[C]. The 18th High-Power Electromagnetics Conference, 2012.
    [9]
    Joo-Gwang Lee, Jin-Seob Kang, Jeong-Hwan Kim et al . Time domain antenna range at KRISS[C]. 2008 Conference on Precision Electromagnetic Measurements Digest, 2008.
    [10]
    严雪飞, 朱长青, 王佳. 瞬态脉冲电场传感器研发现状与展望[J]. 核电子学与探测技术, 2019, 39(3): 356-362. doi: 10.3969/j.issn.0258-0934.2019.03.022
    [11]
    杨超, 孟萃, 李鹏辉, 等. 镜面单锥TEM小室电磁场标准装置[J]. 高电压技术, 2016, 42(5): 1476-1482. doi: 10.13336/j.1003-6520.hve.20160412002
    [12]
    刘子淇,杨会敏,严宇. 交流电磁场检测(ACFM)在薄壁不锈钢焊缝中的应用[J]. 无损检测, 2023, 45(9): 49-53,60.
    [13]
    何梓滨, 邢昊, 蒋廷勇, 等. 超大型低反射镜面单锥脉冲电场标准装置[J]. 电子测量与仪器学报, 2023, 37(5): 117-126. doi: 10.13382/j.jemi.B2306231
    [14]
    邢昊, 何梓滨, 吴梦娟, 等. 电场场强校准技术的研究进展[J]. 计量科学与技术, 2023, 67(3): 20-28,42. doi: 10.12338/j.issn.2096-9015.2023.0035
    [15]
    Zibin H , Hao X , Huiru Z , et al. Research on Reducing the Overall Reflectivity of the Electric Wave Anechoic Chamber[J]. Journal of Physics: Conference Series, 2023, 2537(1): 1547.
    [16]
    蒋廷勇, 燕有杰, 刘小龙, 等. 短电磁脉冲标准场装置实验室比对[J]. 计量学报, 2019, 40(6): 1107-1111. doi: 10.3969/j.issn.1000-1158.2019.06.27
    [17]
    燕有杰, 蒋廷勇, 刘小龙, 等. 超宽谱短电磁脉冲电场标准装置溯源及不确定度评定[J]. 强激光与粒子束, 2014, 26(6): 105-109. doi: 10.11884/HPLPB201426.063022
    [18]
    刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94.
    [19]
    胡翔, 彭煜, 陈俊, 等. 基于智能终端的无线标准测力仪系统设计[J]. 中国计量, 2023(1): 48-52. doi: 10.16569/j.cnki.cn11-3720/t.2023.01.006
    [20]
    IEEE. IEEE Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, From 9 k Hz to 40 GHz : STD 1309—2013[S]. IEEE , 2013.
    [21]
    国家市场监督管理总局. 电场探头校准规范: JJF 1886-2020 [S]. 北京: 中国标准出版社, 2020.
    [22]
    国家市场监督管理总局. 10kHz~100MHz电磁场探头校准规范: JJF 1884-2020 [S]. 北京: 中国标准出版社, 2020.
    [23]
    国家国防科技工业局. 电磁场传感器和探头: JJG(军工)24-2018 [S]. 北京: 中国标准出版社, 2018.
    [24]
    中国人民解放军总装备部. 高功率超宽谱脉冲辐射场测量方法: GJB 8218-2014 [S]. 北京: 总装备部军标出版发行部, 2014.
    [25]
    易涛, 杨晓瑜, 王峰, 等. GJB 8218-2014在高功率激光装置电磁脉冲测量中的应用[J]. 安全与电磁兼容, 2018(5): 49-53.
    [26]
    袁钟柱, 万发雨. 宽带横电磁波小室设计与测试应用[J]. 南京信息工程大学学报(自然科学版), 2021, 13(4): 437-443.
    [27]
    李建轩, 赵治华, 周忠元, 等. 基于TEM小室的宽频高场强校准系统设计[J]. 海军工程大学学报, 2018, 30(6): 17-22. doi: 10.7495/j.issn.1009-3486.2018.06.004
    [28]
    袁钟柱. 宽带横电磁波小室的设计与应用[D]. 南京: 南京信息工程大学, 2022.
    [29]
    刘阳, 韩玉峰. 电磁脉冲电场探头转换系数的校准[J]. 宇航计测技术, 2019, 39(1): 27-30,82. doi: 10.12060/j.issn.1000-7202.2019.01.06
    [30]
    林浩宇, 谢晶, 李红延, 等. GTEM 室性能测量系统研制[J]. 安全与电磁兼容, 2022(4): 28-32. doi: 10.3969/j.issn.1005-9776.2022.04.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (116) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return