Volume 68 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LUO Benyi. Design and Verification of a New Sound-Absorbing Composite Board[J]. Metrology Science and Technology, 2024, 68(3): 58-61, 74. doi: 10.12338/j.issn.2096-9015.2023.0243
Citation: LUO Benyi. Design and Verification of a New Sound-Absorbing Composite Board[J]. Metrology Science and Technology, 2024, 68(3): 58-61, 74. doi: 10.12338/j.issn.2096-9015.2023.0243

Design and Verification of a New Sound-Absorbing Composite Board

doi: 10.12338/j.issn.2096-9015.2023.0243
  • Received Date: 2023-10-26
  • Accepted Date: 2023-11-25
  • Rev Recd Date: 2023-11-28
  • Available Online: 2023-12-08
  • Publish Date: 2024-03-01
  • To address the issue of excessive environmental noise in laboratories, a new type of sound-absorbing composite board was developed. The board has a composite structure consisting of a perforated plate, melamine foam, an asphalt damping layer, glass wool, and a rigid backing (including a skeleton). It exhibits a sound absorption coefficient of no less than 0.6 in the frequency range of 100-5000 Hz. Firstly, Biot's theory was introduced to establish the sound transmission model of the composite board under random incidence of sound waves, and finite element methods were employed to compute the simulation results. Subsequently, a sample of the board was placed in a reverberation room to test its sound absorption coefficient. The test results were consistent with the simulation results, confirming the feasibility of the model. Finally, the sound-absorbing composite board was applied in the environmental noise control project of the Guangzhou Institute of Metrology's thermal laboratory, successfully reducing the indoor noise A-weighted sound pressure level from 79.8 dB to 64.1 dB, further validating the high sound absorption performance of the new sound-absorbing composite board.
  • loading
  • [1]
    李金保, 蒋陈忠, 王海玲. 围墙在噪声治理项目中的应用研究[J]. 机电信息, 2022, 2: 67-68.
    [2]
    候忠, 龚南军, 李贤. 海南花场油气处理中心噪声治理技术探讨[J]. 环境科学与技术, 2019, S1: 280-287.
    [3]
    伏蓉, 张捷, 姚丹, 等. 高速列车车体轻量化层状复合结构隔声设计[J]. 噪声与振动控制, 2016, 36(1): 48-52
    [4]
    钟祥璋, 朱子根. 三聚氰胺吸声泡沫塑料的特性及应用[J]. 音响技术, 2011(6): 28-31.
    [5]
    叶锐, 张路, 付豪, 等. 三聚氰胺泡沫的应用研究[J]. 新型建筑材料, 2016, 43(2): 57-61.
    [6]
    田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19): 194-196.
    [7]
    赵宏刚, 温激鸿, 杨海滨, 等. 一种含柱形空腔结构橡胶层的吸声机理及优化[J]. 物理学报, 2014, 63(13): 134-137.
    [8]
    张丰辉, 唐宇帆, 辛锋先, 等. 微穿孔蜂窝-波纹复合声学超材料吸声行为[J]. 物理学报, 2018, 67(23): 234-237.
    [9]
    吕林梅, 温激鸿, 赵宏刚, 等. 内嵌不同形状散射子的局域共振型粘弹性覆盖层低频吸声性能研究[J]. 物理学报, 2012, 61(21): 214-219.
    [10]
    时胜囯, 高塬, 张昊阳, 等. 基于单元辐射叠加法的结构声源声场重建方法[J]. 物理学报, 2021, 70(13): 134-135.
    [11]
    Bolton J S, Shiau N M, Kang Y J. Sound transmission through muti-panel structures lined with elastic porous materials[J]. Journal of Sound and Vibration, 1996, 191(3): 317-347. doi: 10.1006/jsvi.1996.0125
    [12]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ι. Low frequency range[J]. Journal of the Acoustics Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
    [13]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. High frequency range[J]. Journal of the Acoustics Society of America, 1956, 28(2): 179-191. doi: 10.1121/1.1908241
    [14]
    Liu Y. Sound transmission through triple-panel structures lined with poroelastic materials[J]. Journal of Sound and Vibration, 2015, 339: 376-395. doi: 10.1016/j.jsv.2014.11.014
    [15]
    詹沛, 白国锋, 牛军川, 等. 含空气层与多孔材料的复合结构隔声特性研究[J]. 应用声学, 2014, 33(5): 426-432.
    [16]
    Wang C N, Kuo Y M, Chen S K. Effects of compression on the sound absorption of porous materials with an elastic frame[J]. Applied Acoustics, 2017, 69(1): 31-39. doi: 10.1016/j.apacoust.2017.01.032
    [17]
    Liu Z, Zhan J, Fard M, et al. Acoustics properties of multi-layer sound absorbers with a 3D printed micro-perforated panel[J]. Applied Acoustics, 2017, 121: 25-32. doi: 10.1016/j.apacoust.2017.01.032
    [18]
    刘新金, 刘建立, 徐伯俊, 等. 分层多孔吸声材料吸声结构的性能分析[J]. 振动与冲击, 2012, 31(5): 106-110,117.
    [19]
    宁景峰, 赵桂平, 穆林, 等. 含有空气背衬层的分层多孔材料的吸声性能研究[J]. 振动工程学报, 2014, 27(5): 734-740.
    [20]
    赵松龄. 噪声的降低与隔离[M]. 上海: 同济大学出版社, 1985: 134-135.
    [21]
    姜生, 蔡永东, 周祥, 等. 多层复合吸声结构的制备与性能研究[J]. 纺织学报, 2012, 33(9): 20-25.
    [22]
    王勖成, 邵敏. 有限元法基本原理和数值计算[M]. 北京: 清华大学出版社, 1997: 98-231.
    [23]
    P I Kattan . MATLAB有限元分析与应用[M]. 北京: 清华大学出版社, 2004: 217-231.
    [24]
    宋克志, 刘志儒. 基于Matlab语言的有限元法及其应用[J]. 烟台师范学院学报:自然科学版, 2004(2): 100-102.
    [25]
    赵德奎, 刘勇. MATLAB在有限差分法数值计算中的应用[J]. 四川理工学院学报:自然科学版, 2005, 18(4): 61-64.
    [26]
    黄作英, 阙沛文, 陈亮. PDE工具箱实现偏微分方程的有限元求解[J]. 科学技术与工程, 2006, 6(22): 3631-3633.
    [27]
    李明. 偏微分方程的MATLAB解法[J]. 湖南农机:学术版, 2010, 37(3): 89-91.
    [28]
    陆安君. 偏微分方程的MATLAB解法[M]. 武汉, 武汉大学出版社, 2001, 1-83.
    [29]
    广播电视部. 混响室法吸声系数测量规范: GBJ 47-83[S]. 北京: 中国标准出版社, 1983.
    [30]
    卫生部. 工作场所物理因素测量 第8部分: 噪声: GBZ/T189.8-2007[S]. 北京: 中国标准出版社, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (73) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return