Turn off MathJax
Article Contents
WANG Xiangnan, ZHANG Airui, WANG Meiling, REN Danhua, ZHOU Yan, WANG Hai, CHENG Bin. Accurate Measurement of Limited Carbonyl Compounds and Heavy Metals Content in E-Liquid[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0247
Citation: WANG Xiangnan, ZHANG Airui, WANG Meiling, REN Danhua, ZHOU Yan, WANG Hai, CHENG Bin. Accurate Measurement of Limited Carbonyl Compounds and Heavy Metals Content in E-Liquid[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0247

Accurate Measurement of Limited Carbonyl Compounds and Heavy Metals Content in E-Liquid

doi: 10.12338/j.issn.2096-9015.2023.0247
  • Received Date: 2023-10-29
  • Accepted Date: 2023-11-03
  • Rev Recd Date: 2023-12-22
  • Available Online: 2024-04-12
  • Two analytical methods based on high performance liquid chromatography (HPLC) and hydride generation - atomic fluorescence spectroscopy (HG-AFS) were established to accurately determine four target carbonyl compounds (viz. formaldehyde, acetaldehyde, acrolein and 2,3-butadione) and two target heavy metals (via. arsenic and lead) in two different e-liquids, respectively. After their derivatization with 2,4-dinitrophenylhydrazine hydrochloride, the e-liquid specimens were analyzed quantitatively by HPLC. The results showed the detection limit of (0.53~1.2) μg/L, the measurement repeatability of 0.26%~2.2%, the spike recovery of 90%~103% and the combined uncertainty of 1.6%~4.5%. After their microwave digestion, the e-liquid specimens were analyzed quantitatively by HG-AFS. The results showed the detection limit of (0.007~0.025) ng/g, the measurement repeatability of 2.2%~4.5%, the spike recovery of 95%~101% and the combined uncertainty of 2.2%~4.9%. The two methods established have an advantage of simple sample pretreatment, high sensitivity, good repeatability and good accuracy, which are very suitable for the accurate determination of limited carbonyl compounds and heavy metals content in e-liquid and are also beneficial to the implementation of related national documented standards and the supervision of e-liquids.
  • loading
  • [1]
    杨文武, 况利平, 皇晓燕, 等. 电子烟中有毒有害物质研究进展[J]. 云南化工, 2023, 50(9): 27-32.
    [2]
    陈苏静, 郭奕, 李守凤, 等. 电子烟对呼吸系统健康影响的研究进展[J]. 中国健康教育, 2023, 39(2): 152-156.
    [3]
    齐兆斌, 肖琳. 电子烟的健康危害研究进展[J]. 中国健康教育, 2022, 38(2): 168-172.
    [4]
    贾晓娴, 谢臣晨, 龚正阳, 等. 电子烟的健康风险研究进展[J]. 环境与职业医学, 2021, 38(4): 438-445.
    [5]
    王明霞, 张书铭, 窦玉青, 等. 电子烟安全性研究进展[J]. 中国烟草科学, 2020, 41(3): 88-92.
    [6]
    杨硕, 李振国, 曲翊. 液相色谱测定醛酮类化合物方法优化研究[J]. 绿色科技, 2021, 23(6): 128-129. doi: 10.3969/j.issn.1674-9944.2021.06.044
    [7]
    Hutzler C, Paschke M, Kruschinski S, et al. Chemical hazards present in liquids and vapors of electronic cigarettes[J]. Arch. Toxicol., 2014, 88(7): 1295-1308. doi: 10.1007/s00204-014-1294-7
    [8]
    Hyun-Ji Kim and Ho-Sang Shin. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1291: 48-55. doi: 10.1016/j.chroma.2013.03.035
    [9]
    曹玉洁, 王广鹤. 大气细颗粒物与电子烟联合暴露毒性研究进展[J]. 环境与职业医学, 2023, 40(5): 595-600,608. doi: 10.11836/JEOM22427
    [10]
    姚明俊. 室内香烟、电子烟释放甲醛和VOCs的散发特征及健康风险分析[D]. 北京: 北京建筑大学, 2023.
    [11]
    蒋举兴, 者为, 詹建波, 等. 电子烟的发展现状及其危害性[J]. 安徽农业科学, 2013, 41(16): 7322, 7353.
    [12]
    于明芳, 李荣, 雷樟泉, 等. 烟用香精香料中重金属和砷的控制[J]. 烟草科技, 1998(6): 28-30.
    [13]
    欧阳驰, 陈晓岚, 李石旺, 等. 吸烟的重金属危害与DNA损伤[J]. 湘南学院学报(医学版), 2010, 12(1): 18-21.
    [14]
    樊美娟, 赵乐, 崔华鹏, 等. 电子烟中化学成分风险研究进展[J]. 中国烟草学报, 2018, 24(3): 120-129.
    [15]
    蔡君兰, 陈黎, 刘绍锋, 等. 电子烟气溶胶的研究进展[J]. 中国烟草学报, 2016, 22(1): 138-146.
    [16]
    AFNOR. Electronic cigarettes and e-liquids—Part 2: Requirements and test methods for e-liquids : XP 090-300-2—2015[S]Paris, 2015.
    [17]
    BSI. Vaping products, including electronic cigarettes, e-liquid, e-shisha and directly-related : PAS 54115—2015[S]. London, 2015.
    [18]
    国家市场监督管理总局. 电子烟: GB 41700-2022 [S]. 北京: 中国标准出版社, 2022.
    [19]
    陈刚, 佘世科, 周顺, 等. 高效液相色谱法测定电子烟烟液中8种挥发性羰基化合物[J]. 安徽农业科学, 2014, 42(31): 11072-11074,11082. doi: 10.3969/j.issn.0517-6611.2014.31.086
    [20]
    张霞, 翟玉俊, 谢玉龙, 等. 高效液相色谱法测定卷烟醋酸纤维滤棒中甲醛、乙醛和丙酮的含量[J]. 分析测试技术与仪器, 2011, 17(02): 118-122. doi: 10.3969/j.issn.1006-3757.2011.02.013
    [21]
    潘立宁, 刘绍锋, 李东亮, 等. 水分散-DNPH衍生-LC-MS/MS法同时测定电子烟液中8种羰基物[J]. 烟草科技, 2021, 54(8): 63-70.
    [22]
    王丁众, 李鹏, 张启东, 等. UPLC-HRMS法测定无烟气烟草制品中的小分子醛[J]. 烟草科技, 2018, 51(1): 43-49.
    [23]
    纪然, 阮虹. 液相色谱法测定空气中17种醛酮类化合物[J]. 化工环保, 2009, 29(2): 188-192. doi: 10.3969/j.issn.1006-1878.2009.02.022
    [24]
    柳玲, 李超翔, 张毅. 环境空气13种醛酮类化合物的检测方法优化与初步应用[J]. 四川环境, 2023, 42(4): 23-28.
    [25]
    黄丹, 陈莉, 王燕飞, 等. 环境测试舱-高效液相色谱法测定汽车内饰件中18种挥发性醛酮类物质[J]. 化学分析计量, 2023, 32(7): 65-69.
    [26]
    Yokoyama T, Andoh Y, Kunisawa Takanori, et al. Selective determination of formaldehyde by high-performance liquid chromatography with porous graphitic carbon column using N, N'-bis(9-anthrylmethyl)propane-1, 3-diamine as derivatizing reagent. [J]. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 2022, 7: 1.
    [27]
    孔祥鑫. GC-MS和LC-MS联用测定烟梗中几种重要成分的研究分析[D]. 湘潭: 湘潭大学, 2021.
    [28]
    胡燕杰(Ruby). 重金属检测前处理方法研究及水产品中重金属含量检测分析[D]. 杭州: 浙江大学, 2019.
    [29]
    王树加,郑巧清,卢思,等.微波消解-电感耦合等离子体质谱(ICP-MS)法测定土壤7种金属元素[J/OL].中国无机分析化学:1-8[2023-10-27].
    [30]
    刘兰英, 吕新, 李莹, 等. FAAS法测定海带中微量元素的不确定度评定[J]. 食品工业, 2023, 44(1): 320-324.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(10)

    Article Metrics

    Article views (44) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return