Volume 67 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
MO Xinyue, BI Zhe, FAN Xiaohui, CAI Donglv, WEI Qiuye, WANG Honghong, ZHAO Xinrui. Metrological Requirements and Challenges in Carbon Capture, Utilization and Storage Technologies for Achieving Carbon Neutrality[J]. Metrology Science and Technology, 2023, 67(9): 3-14. doi: 10.12338/j.issn.2096-9015.2023.0249
Citation: MO Xinyue, BI Zhe, FAN Xiaohui, CAI Donglv, WEI Qiuye, WANG Honghong, ZHAO Xinrui. Metrological Requirements and Challenges in Carbon Capture, Utilization and Storage Technologies for Achieving Carbon Neutrality[J]. Metrology Science and Technology, 2023, 67(9): 3-14. doi: 10.12338/j.issn.2096-9015.2023.0249

Metrological Requirements and Challenges in Carbon Capture, Utilization and Storage Technologies for Achieving Carbon Neutrality

doi: 10.12338/j.issn.2096-9015.2023.0249
  • Received Date: 2023-10-31
  • Accepted Date: 2023-10-31
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-16
  • Publish Date: 2023-09-18
  • In the context of carbon neutrality objectives, the Carbon Capture, Utilization, and Storage (CCUS) system, a vital method for emissions reduction, is expected to be deployed more rapidly and extensively in China. It is anticipated to integrate into the carbon trading market. Key aspects such as flow measurement, composition analysis, CO2 leakage detection, process control, and efficiency evaluation play critical roles in influencing the technical costs, operational safety, regulatory compliance, and environmental impact of CCUS projects. Effective measurement and monitoring are essential for the regulatory framework of CCUS. Metrology and testing technologies are imperative for providing accurate assessments of the economic viability, effectiveness, sustainability, and safety of CCUS processes, along with their carbon emission reduction impact. This paper investigates the advancements in metrology and testing technologies in the CCUS sector, both domestically and internationally. It analyzes the metrological challenges encountered in various stages of CCUS, including process control, purity analysis, and leakage detection. We summarize the specific measurement and testing needs in CCUS development and propose recommendations to enhance metrological support for the future progression of CCUS.
  • loading
  • [1]
    Nguyen H. G. T. , Espinal L. , van Zee R. D. , et al. A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: results of an interlaboratory study[J]. Adsorption (Boston), 2018, 24(6): 531-539.
    [2]
    W. Sean McGivern, Huong Giang T, Nguyen Jeffrey A. Manion. Improved Apparatus for Dynamic Column-Breakthrough Measurements Relevant to Direct Air Capture of CO2[J]. Industrial & Engineering Chemistry Research, 2023, 62(21): 8362-8372.
    [3]
    Moon H J, Carrillo J M, Leisen J, et al. Understanding the Impacts of Support–Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15[J]. Journal of the American Chemical Society, 2022, 144(26): 11664-11675. doi: 10.1021/jacs.2c03028
    [4]
    Han B, Ding X, Yu B, et al. Two-Dimensional Covalent Organic Frameworks with Cobalt (II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction[J]. Journal of the American Chemical Society, 2021, 143(18): 7104-7113. doi: 10.1021/jacs.1c02145
    [5]
    Queen W. L. , Hudson M. R. , Bloch E. D. , et al. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M 2 (dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)[J]. Chemical Science, 2014, 5(12): 4569-4581.
    [6]
    Jahrman E , Nguyen H, Kalanyan B. X-ray Characterization of a Metal-organic Framework During Dehydration and CO2 Adsorption[C]. Denver X-ray Conference, 2023.
    [7]
    Euramet. Publishable Summary for 21GRD06 MetCCUS Metrology Support for Carbon Capture Utilisation and Storage[EB/OL].https://www.euramet.org/european-metrology-networks/energy-gases/download?tx_eurametfiles_download%5Baction%5D=download&tx_eurametfiles_download%5Bcontroller%5D=File&tx_eurametfiles_download%5Bfiles%5D=47053&tx_eurametfiles_download%5Bidentifier%5D=%252Fdocs%252FEMRP%252FJRP%252FJRP_Summaries_2021%252FGreen_Deal%252F21GRD06_Publishable_Summary.pdf&cHash=5a3dbb460176ea5f97b7d1872a8ee41f.
    [8]
    Mills C, Chinello G, Henry M. Flow measurement challenges for carbon capture, utilisation and storage[J]. SSRN Electronic Journal, 2022, 8: 102261-102268.
    [9]
    M. Florjanič, Kristl J. Microbiological Quality Assurance of Purified Water by Ozonization of Storage and Distribution System[J]. Drug Development and Industrial Pharmacy, 2006, 10(32): 1113-1121.
    [10]
    李盼盼. 气-液两相CO2流量标准装置控制系统研制[D]. 天津: 天津大学, 2016.
    [11]
    王宏超. 二氧化碳流量在线测量[D]. 北京: 华北电力大学, 2018.
    [12]
    马俊章. 管输CO2参数优化[D]. 西安: 西安石油大学, 2015.
    [13]
    吕家兴, 侯磊, 吴守志, 等. 含气体杂质超临界CO2管道输送特性研究[J]. 天然气化工—C1化学与化工, 2020, 45(5): 77-82.
    [14]
    罗积鹏. 4.2~300 K温区热容测量绝热量热装置研制[D]. 北京: 中国科学院大学, 2022.
    [15]
    吴其贤. 新型相移干涉法测量超临界流体瞬态热对流特性[D]. 北京: 中国科学院大学, 2021.
    [16]
    陈兵, 房启超, 白世星. 含杂质超临界CO2输送管道的停输影响因素[J]. 天然气化工—C1化学与化工, 2020, 45(3): 84-89.
    [17]
    陈兵, 肖红亮, 曹双歌. 适合陕北CCUS的含杂质的CO2气源品质指标研究[J]. 天然气化工—C1化学与化工, 2017, 42(3): 63-66.
    [18]
    陈兵, 康庆华, 肖红亮. 含杂质CO2管道输送泄漏扩散的数值模拟[J]. 安全与环境工程, 2019, 26(3): 95-100.
    [19]
    张成龙, 郝文杰, 胡丽莎, 等. 泄漏情景下碳封存项目的环境影响监测技术方法[J]. 中国地质调查, 2021, 8(4): 92-100. doi: 10.19388/j.zgdzdc.2021.04.10
    [20]
    蔡雨娜. CO2泄漏的含水层响应及沿井筒的相变流动特征研究[D]. 北京: 中国科学院大学, 2022.
    [21]
    田耕源, 周源, 黄彦平, 等. 超临界二氧化碳容器小尺度泄压喷放实验研究[J]. 核科学与技术, 2020, 8(3): 103-111.
    [22]
    王欣, 李少华, 刘瑜, 等. CO2地质封存中储层岩石润湿性测量研究进展[J]. 上海理工大学学报, 2023, 45(3): 205-219.
    [23]
    侴爱辉, 张辉, 李虎. 一种高压条件下测定吸附剂静态吸附容量的装置[J]. 实验室研究与探索, 2011, 30(5): 35-37. doi: 10.3969/j.issn.1006-7167.2011.05.011
    [24]
    彭雪婷, 吕昊东, 张贤. IPCC AR6报告解读: 全球碳捕集利用与封存(CCUS)技术发展评估[J]. 气候变化研究进展, 2022, 18(5): 11.
    [25]
    张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-9. doi: 10.3969/j.issn.1006-6535.2023.02.001
    [26]
    Fu H C, You F, Li H R, et al. CO2 Capture and in situ Catalytic Transformation[J]. Frontiers in Chemistry, 2019, 7: 525. doi: 10.3389/fchem.2019.00525
    [27]
    Shao B, Zhang Y, Sun Z, et al. CO2 capture and in-situ conversion: recent progresses and perspectives[J]. Green Chemical Engineering, 2022, 3(3): 189-198. doi: 10.1016/j.gce.2021.11.009
    [28]
    Aleta P, Refaie A, Afshari M, et al. Direct Ocean Capture: The Emergence of Electrochemical Processes for Oceanic Carbon Removal[J/OL]. Energy & Environmental Science, 2023.https://doi.org/10.1039/d3ee01471a.
    [29]
    朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877.
    [30]
    Espinal L, Poster D L, Wong-Ng W, et al. Measurement, standards, and data needs for CO2 capture materials: a critical review[J]. Environ Sci Technol, 2013, 47(21): 11960-11975. doi: 10.1021/es402622q
    [31]
    Dai N, Shah A. D, Hu L, et al. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration[J]. Environ. Sci. Technol, 2012, 46: 9793-9801. doi: 10.1021/es301867b
    [32]
    Da Silva E. F, Anders K, Booth A. Emissions from CO2 capture plants; an overview[J]. Energy Proc, 2013, 37: 784-790. doi: 10.1016/j.egypro.2013.05.168
    [33]
    Ning Dai, William A. Mitch. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO2 Capture Systems with Continuous Ultraviolet and Ozone Treatment of Wash water[J]. Environmental Science & Technology, 2015, 49(14): 8878-8886.
    [34]
    Nathan A. Fine, Paul T. Nielsen, Gary T. Rochelle. Decomposition of Nitrosamines in CO2 Capture by Aqueous Piperazine or Monoethanolamine[J]. Environmental Science & Technology, 2014, 48(10): 5996-6002.
    [35]
    方梦祥, 狄闻韬, 易宁彤, 等. CO2化学吸收系统污染物排放与控制研究进展[J]. 洁净煤技术, 2021, 27(2): 8-16.
    [36]
    Global CCS Institute. FACT SHEET: TRANSPORTING CO2[Z]. 2018.
    [37]
    Murugan A, Brown R J C, Wilmot R, et al. Performing Quality Assurance of Carbon Dioxide for Carbon Capture and Storage[J]. Journal of Carbon Research C, 2020, 6(4): 76. doi: 10.3390/c6040076
    [38]
    王海峰, 宋小平, 李佳. 采用燃料分析法计量化石燃料燃烧产生的碳排放量[J]. 计量科学与技术, 2023, 67(7): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0189
    [39]
    田健. 微电网绿色低碳发展的关键技术与应用[J]. 计量科学与技术, 2023, 67(7): 25-33. doi: 10.12338/j.issn.2096-9015.2023.0165
    [40]
    Algae Cultivation for Carbon Capture and Utilization Workshop summary report[Z]. [2017-09-28].https://www.energy.gov/eere/bioenergy/articles/algae-cultivation-carbon-capture-and-utilization-workshop-summary-report.
    [41]
    Zhang Z , Pan S Y , Li H , et al. Recent advances in carbon dioxide utilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109799.
    [42]
    康宇, 崔恒波, 顾积锋. 水泥工业二氧化碳减排工艺技术探讨[J]. 中国水泥, 2023(8): 78-81. doi: 10.3969/j.issn.1671-8321.2023.08.019
    [43]
    张荣召, 徐鸿志, 胡冰洁. 二氧化碳基可降解塑料的合成、性能及应用[J]. 塑料, 2022, 51(6): 127-133,151.
    [44]
    张振, 邓煜, 张琴芳, 等. 可见光促进二氧化碳参与的羧基化反应[J]. 高等学校化学学报, 2022, 43(7): 108-135.
    [45]
    Alcalde J , Flude S , Wilkinson M , et al. Estimating geological CO2 storage security to deliver on climate mitigation[J]. Nature Communication, 2017, 9(1): 2201.
    [46]
    Glen N , Hunter L . Measurement challenges for carbon capture and storage[J]. Measurement and Control -London- Institute of Measurement and Control, 2011, 44(3): 81-85.
    [47]
    IEAGHG. Effects of impurities on geological storage of CO2[C]. Cheltenham, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views (140) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return