Volume 67 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHOU Fengran, SHU Hui, YANG Yangzhongfu, WANG Defa, ZHANG Tiqiang, HAN Zhongjie, XIE Conghui, WANG Ningfei. Advancements in Carbon Reduction and Metrology Technologies in Response to China's Dual Carbon Goals[J]. Metrology Science and Technology, 2023, 67(9): 15-24. doi: 10.12338/j.issn.2096-9015.2023.0253
Citation: ZHOU Fengran, SHU Hui, YANG Yangzhongfu, WANG Defa, ZHANG Tiqiang, HAN Zhongjie, XIE Conghui, WANG Ningfei. Advancements in Carbon Reduction and Metrology Technologies in Response to China's Dual Carbon Goals[J]. Metrology Science and Technology, 2023, 67(9): 15-24. doi: 10.12338/j.issn.2096-9015.2023.0253

Advancements in Carbon Reduction and Metrology Technologies in Response to China's Dual Carbon Goals

doi: 10.12338/j.issn.2096-9015.2023.0253
  • Received Date: 2023-11-01
  • Accepted Date: 2023-11-14
  • Rev Recd Date: 2023-11-16
  • Available Online: 2023-11-24
  • Publish Date: 2023-09-18
  • The excessive emission of greenhouse gases has led to a surge in extreme weather events and natural disasters, necessitating a shift to low-carbon development. In 2020, China set forth the strategic dual carbon goals of 'carbon peaking' and 'carbon neutrality' to foster low-carbon growth. Since the implementation of these goals, guided by the '1+N' policy framework, China has made significant strides in carbon emission reduction. However, balancing high-quality economic growth while striving to meet these dual carbon objectives remains a formidable challenge. This paper analyzes the current application of carbon reduction and metrology technologies in achieving these goals, summarizing key research areas to alleviate the pressures associated with their realization. The study encompasses both domestic and international carbon reduction technologies, focusing on lowering greenhouse gas warming potentials, reducing radiative forcing, and controlling carbon emissions. A primary research focus identified is the development of safe, reliable clean alternative energy sources. Metrology technology plays a crucial role in supporting China’s dual carbon initiatives and ensuring that carbon emission data align with international standards. The paper explores the progress of metrology technology in areas such as greenhouse gas monitoring, carbon emission accounting, low global warming potential (GWP) gas development, and international greenhouse gas comparisons. Key research directions include establishing a metrology system for greenhouse gas monitoring and traceability, enhancing carbon emission metrology methods, and leveraging uncertainty assessment in various tasks. Special attention is required for the development and application of metrology technology in formulating low GWP chemicals. Challenges such as resolving measurement biases due to matrix gases and accurately measuring target impurity gas concentrations in feed gases are highlighted as critical areas for future international greenhouse gas comparison efforts.
  • loading
  • [1]
    GIANLUCA A, LUIGI M, FRANCO P, et al. A critical assessment of extreme events trends in times of global warming[J]. Eur. Phys. J. Plus, 2022, 137(112): 1-20.
    [2]
    MAFIZUR M R, NAHID S, ESWARAN V. Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies[J]. Renewable Energy, 2022, 184: 252-265. doi: 10.1016/j.renene.2021.11.068
    [3]
    ZHOU B Y, LI Y P, DING Y K, et al. An input-output-based Bayesian neural network method for analyzing carbon reduction potential: A case study of Guangdong province[J]. Journal of Cleaner Production, 2023, 389: 135986. doi: 10.1016/j.jclepro.2023.135986
    [4]
    周军. 过度碳排放带来的灾害[J]. 防灾博览, 2021(3): 38-39.
    [5]
    LAI S X, LU J P, LUO X Y, et al. Carbon emission evaluation model and carbon reduction strategies for newly urbanized areas[J]. Sustainable Production and Consumption, 2022, 31: 13-25. doi: 10.1016/j.spc.2022.01.026
    [6]
    中国政府网. 中国应对气候变化取得积极成效[EB/OL]. (2021-10-30)[2023-8-6].https://www.gov.cn/xinwen/2021-10/30/content_5647715.htm.
    [7]
    廖睿灵. 可再生能源发电总装机突破11亿千瓦[N]. 人民日报海外版, 2022-06-29.
    [8]
    田健. 微电网绿色低碳发展的关键技术与应用[J]. 计量科学与技术, 2023, 67(7): 25-33. doi: 10.12338/j.issn.2096-9015.2023.0165
    [9]
    段晓男, 曲建升, 曾静静, 等. 《京都议定书》缔约国履约相关状况及其驱动因素初步分析[J]. 世界地理研究, 2016, 25(4): 8-16.
    [10]
    世界气象组织. 基于2021年全球观测的大气温室气体状况[EB/OL]. (2022-10-26)[2023-8-6].https://library.wmo.int/doc_num.php?explnum_id=11373.
    [11]
    中国气象局. 2021年中国温室气体公报[EB/OL]. (2023-1-9)[2023-8-6].https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202301/t20230119_5274988.html.
    [12]
    中国气象局官方网站. 二氧化碳当量为度量温室效应基本单位[EB/OL]. (2009-12-14)[2023-8-6].https://www.cma.gov.cn/2011xwzx/2011xqhbh/2011xgzysykp/201110/t20111027_128929.html.
    [13]
    张佳璇. “一带一路”沿线国家贸易中隐含的CO2排放转移及对各地区辐射强迫的影响[D]. 兰州: 兰州大学, 2023.
    [14]
    杨美昭. 企业温室气体排放量监测计量方法研究[D]. 保定: 河北大学, 2021.
    [15]
    ANAS I, TANG X R, IZHAR A, et al. Integrating low levels of organic fertilizer improves soil fertility and rice yields in paddy fields by influencing microbial communities without increasing[J]. Applied Soil Ecology, 2023, 189: 104951. doi: 10.1016/j.apsoil.2023.104951
    [16]
    LI Q, CUI K K, LV J H, et al. Biochar amendments increase soil organic carbon storage and decrease global warming potentials of soil CH4 and N2O under N addition in a subtropical Moso bamboo plantation[J]. Forest Ecosystems, 2022, 9: 100054. doi: 10.1016/j.fecs.2022.100054
    [17]
    ZHU H, NIU T T, BRIAN S, et al. Integration of MFC reduces CH4, N2O and NH3 emissions in batch-fed wetland systems[J]. Water Research, 2022, 226: 119226. doi: 10.1016/j.watres.2022.119226
    [18]
    SRIJANA R, DANNY H, JAMES L, et al. Comparative Life Cycle Evaluation of the Global Warming Potential (GWP) Impacts of Renewable Natural Gas Production Pathways[J]. Environ. Sci. Technol, 2022, 56(12): 8581-8589. doi: 10.1021/acs.est.2c00093
    [19]
    王广先, 赵瑞影. 环境优化 SF6 替代气体在中高压电力设备中的应用浅析[J]. 电器与能效管理技术, 2022, 8: 76-80.
    [20]
    吴小钊, 李俊豪, 付鲁军, 等. C4F7N/CO2环保混合气体在去离子栅式负荷开关中的开断特性[J]. 高压电器, 2021, 57(3): 48-53.
    [21]
    张佳. 高压断路器中环保C4F7N混合气体绝缘与熄弧特性研究[D]. 沈阳: 沈阳工业大学, 2022.
    [22]
    FROMMING C, PONATER M, DAHLMANN K, et al. Aviation-induced radiative forcing and surface temperature change in dependency of the emission altitude[J]. J GEOPHYS RES, 2012, 112: D19104.
    [23]
    OLIVIER B, AUDRAN B, THOMAS G, et al. On the contribution of global aviation to the CO2 radiative forcing of climate[J]. Atmospheric Environment, 2021, 267: 118762. doi: 10.1016/j.atmosenv.2021.118762
    [24]
    李宝英. 聚焦“双碳”大数据助力钢铁企业预算管理[J]. 冶金财会, 2023, 42(10): 36-40.
    [25]
    张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187.
    [26]
    TIAN W J, AN H F, LI X J, et al. CO2 accounting model and carbon reduction analysis of iron and steel plants based on intra- and inter-process carbon metabolism[J]. Journal of Cleaner Production, 2022, 8: 360.
    [27]
    姚俊华. 建筑节能降碳技术在建筑设计中的应用研究[J]. 城市建设理论研究(电子版), 2023(1): 77-79.
    [28]
    李恒, 刘伟, 梁曼, 等. 我国粉煤灰综合利用途径及对减排降碳的影响分析[J]. 居业, 2021(11): 165-166. doi: 10.3969/j.issn.2095-4085.2021.11.082
    [29]
    MAK M W T, LEE J M. Carbon reduction and strength enhancement in functionally graded reinforced concrete beams[J]. Engineering Structures, 2023, 277: 115358. doi: 10.1016/j.engstruct.2022.115358
    [30]
    RANI V, PATRICK T S, P. R. J, et al. Carbon stocks and sequestration rate in mangroves and its major influencing factors from highly urbanised port city, southern India[J]. J. Environ, 2023, 335: 117542.
    [31]
    DONG H N, CHEN Y, HUANG X C, et al. Multi-scenario simulation of spatial structure and carbon sequestration evaluation in residential green space[J]. Ecological Indicators, 2023, 154: 110902. doi: 10.1016/j.ecolind.2023.110902
    [32]
    FANG L, HAI P Z, JIA J F, et al. Amine-functionalized graphitic carbon nitride decorated with small-sized Au nanoparticles for photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2020, 570: 11-19. doi: 10.1016/j.jcis.2020.02.108
    [33]
    MONTICELLI S, TABLOT A, GOTICO P, et al. Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation[J]. Nat Commun, 2023, 14: 445. doi: 10.1038/s41467-023-36164-1
    [34]
    安艳文, 李福芬, 那钊宇, 等. 温室气体监测标准物质和测量技术的研究进展[J]. 低温与特气, 2023, 41(5): 1-7.
    [35]
    徐驰, 吕怡兵, 李健军, 等. 国际温室气体监测量值传递与质量控制经验及启示[J]. 中国环境监测, 2023, 39(1): 10-18. doi: 10.19316/j.issn.1002-6002.2023.01.02
    [36]
    王海峰, 宋小平, 李佳. 采用燃料分析法计量化石燃料燃烧产生的碳排放量[J]. 计量科学与技术, 2023, 67(7): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0189
    [37]
    谢文琪, 姚波, 吴国明, 等. 河北省中南部二氧化碳浓度的飞机探测研究[J]. 中国环境科学, 2023, 43(2): 525-531. doi: 10.3969/j.issn.1000-6923.2023.02.004
    [38]
    沈凤娇, 谈图, 卢军, 等. EC-QCL中红外激光外差光谱遥测技术研究[J]. 光谱学与光谱分析, 2023, 43(6): 1739-1745.
    [39]
    庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152.
    [40]
    张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47(9): 2-12. doi: 10.7500/AEPS20221021001
    [41]
    张利娜. 双碳目标下钢铁行业低碳发展形势及应对[J]. 冶金经济与管理, 2022(5): 7-8. doi: 10.3969/j.issn.1002-1779.2022.05.003
    [42]
    赵艺伟, 左海滨, 佘雪峰, 等. 钢铁工业二氧化碳排放计算方法实例研究[J]. 有色金属科学与工程, 2019, 10(1): 34-40. doi: 10.13264/j.cnki.ysjskx.2019.01.006
    [43]
    勾丽明, 张清华, 陈瀛, 等. 基于碳排放抵扣的碳排放计量方法研究——以钢材生产为例[J]. 中国环境管理, 2016, 8(6): 99-103. doi: 10.16868/j.cnki.1674-6252.2016.06.099
    [44]
    王思博. 水泥行业温室气体排放核算方法研究[D]. 北京: 中国社会科学院研究生院, 2012.
    [45]
    牛书宁, 付文杰, 潘本锋. 在线监测法在水泥行业碳排放量计量中的应用研究[J]. 石油化工应用, 2022, 41(12): 14-18. doi: 10.3969/j.issn.1673-5285.2022.12.004
    [46]
    孙志超. 碳达峰背景下广东省班线客运企业二氧化碳排放核算方法研究[J]. 交通节能与环保, 2022, 18(5): 60-64.
    [47]
    LI B W, ZHAO X C, LI X H, et al. Emission factors of ozone-depleting chloromethanes during production processes based on field measurements surrounding a typical chloromethane plant in China[J]. Journal of Cleaner Production, 2023, 414: 137573. doi: 10.1016/j.jclepro.2023.137573
    [48]
    刘静, 黄青丹, 王勇, 等. 基于自制气体循环系统测定全氟异丁腈中杂质成分[J]. 色谱, 2020, 38(5): 606-610.
    [49]
    王德发, 张体强, 韩桥, 等. 二氧化碳中全氟异丁腈气体标准物质的研制[J]. 计量学报, 2021, 42(1): 123-128.
    [50]
    和彦淼, 黄印, 颜湘莲, 等. SF6混合气体和环保替代气体设备标准化研究[J/OL]. http://kns.cnki.net/kcms/detail/11.3265.tm.20230607.1158.008.html.
    [51]
    EDGAR F, JOELE V, TIPHAINE C, et al. CCQM-K120 (Carbon dioxide at background and urban level)[J]. Metrologia, 2019, 56: 08001. doi: 10.1088/0026-1394/56/1A/08001
    [52]
    BRADLEY D H, ANDREW M C, DUANE R K, et al. Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale[J]. AMT, 2021, 14(4): 3015-3032.
    [53]
    EDGAR F, JOELE V, TIPHAINE C, et al. International comparison CCQM-K82: methane in air at ambient level (1800 to 2200) nmol/mol[J]. Metrologia, 2015, 52: 08001. doi: 10.1088/0026-1394/52/1A/08001
    [54]
    JOELE V, TIPHAINE C, EDGAR F, et al. CCQM-K68.2019, nitrous oxide (N2O) in air, ambient level, final report[J]. Metrologia, 2023, 60: 08001. doi: 10.1088/0026-1394/60/1A/08001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (187) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return