Volume 67 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHU Caiyi, LUO Ying, LI Hua, CHEN Chuan. Exploration and Analysis of Traceability and Calibration Methods for DC Shunt Verification Devices[J]. Metrology Science and Technology, 2023, 67(9): 61-68, 39. doi: 10.12338/j.issn.2096-9015.2023.0258
Citation: ZHU Caiyi, LUO Ying, LI Hua, CHEN Chuan. Exploration and Analysis of Traceability and Calibration Methods for DC Shunt Verification Devices[J]. Metrology Science and Technology, 2023, 67(9): 61-68, 39. doi: 10.12338/j.issn.2096-9015.2023.0258

Exploration and Analysis of Traceability and Calibration Methods for DC Shunt Verification Devices

doi: 10.12338/j.issn.2096-9015.2023.0258
  • Received Date: 2023-11-03
  • Accepted Date: 2023-11-22
  • Rev Recd Date: 2023-11-28
  • Available Online: 2023-12-06
  • Publish Date: 2023-09-18
  • To ensure the effective traceability of DC shunt verification devices, thus guaranteeing the accuracy and reliability of both the device and the DC shunts it measures, this paper delineates the wide-range, high-current traceability relationships for DC energy. It introduces the working principles of each measuring instrument in the traceability chain, with a focus on the traceability standards and calibration methods of the DC shunt verification device. The paper also discusses and analyzes key technologies for precise measurement of large DC currents and small-signal DC voltages, such as precision I/V conversion and multiple-slope integral analog-to-digital conversion techniques. An example of uncertainty evaluation for measurement results is provided. The proposed methods offer technical support for the development of clean energy infrastructure and ensure fair energy trading. This field warrants further in-depth study based on the discussions and analyses presented.
  • loading
  • [1]
    Wang Zhi, Yang Maotao, Yang Jing. Research and Construction of DC Energy Measurement Traceability Technology[J]. IOP Conference Series:Earth and Environmental Science, 2018, 113(1): 012097.
    [2]
    黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018.
    [3]
    苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 2021, 36(9): 1001-1009.
    [4]
    Gelani, Hasan, Erteza, et al. AC vs. DC Distribution Efficiency: Are We on the Right Path?[J]. Energies, 2021, 14(13): 4039. doi: 10.3390/en14134039
    [5]
    Lin E, Yu Xiao, Zhen MA, et al. Research on Probabilistic Power Flow Calculation of DC Distribution Network[J]. Journal of Physics:Conference Series, 2021, 1887(1): 012037. doi: 10.1088/1742-6596/1887/1/012037
    [6]
    陈永亮. 常用直流电流检测技术研究[J]. 电器与能效管理技术, 2018(22): 82-86.
    [7]
    刘玮, 万燕鸣, 熊亚林, 等. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642.
    [8]
    张鸿宇, 黄晓丹, 张达, 等. 加速能源转型的经济社会效益评估[J]. 中国科学院院刊, 2021, 36(9): 1039-1048.
    [9]
    王海峰, 宋小平, 李佳. 采用燃料分析法计量化石燃料燃烧产生的碳排放量[J]. 计量科学与技术, 2023, 67(7): 3-10.
    [10]
    严大洲, 刘艳敏, 万烨, 等. 晶硅太阳能在“双碳”经济中的作用与影响[J]. 中国有色冶金, 2021, 50(5): 1-6.
    [11]
    李开省. 碳中和目标下航空能源转型研究[J]. 航空科学技术, 2021, 32(9): 1-11.
    [12]
    王明华. 绿氢耦合煤化工系统的性能分析及发展建议[J]. 现代化工, 2021, 41(11): 4-8.
    [13]
    Sarangi Swetalina, Sahu Binod Kumar, Rout Pravat Kumar. A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction[J]. International Journal of Energy Research, 2020, 45(4): 5006-5031.
    [14]
    石照民, 张江涛, 潘仙林, 等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术, 2021, 65(5): 30-35.
    [15]
    王红洁, 周航, 马烨, 等. 直流电能表的应用与量值传递体系研究[J]. 科技与创新, 2017(2): 87-88.
    [16]
    陆鑫红. 基于直流工况条件的直流电能计量研究[D]. 杭州: 中国计量大学, 2023.
    [17]
    曹骞, 李庆先, 何献华. 电子式直流电能表测量结果的不确定度分析[J]. 仪器仪表标准化与计量, 2017(3): 34-36.
    [18]
    杜澎, 李峻, 杨毅. 用分流器测试逆变焊机焊接电流的方法探讨[J]. 中国检验检测, 2020, 28(3): 28-31.
    [19]
    李华, 黄贺, 周克宏. 直流分流器型式试验中的测量不确定度评定[J]. 计量与测试技术, 2020, 47(11): 112-113.
    [20]
    张红, 马俊, 赵斌, 等. 影响间接接入式直流电能表计量准确性的相关研究[J]. 电测与仪表, 2019, 56(3): 144-147,152.
    [21]
    于春平, 段永贤, 李熊, 等. 直流电能表国内外标准对比分析[J]. 浙江电力, 2022, 41(2): 14-19.
    [22]
    陆春光, 姚力, 金立人. 直流电能表检定研究[J]. 电测与仪表, 2012, 49(S1): 50-54.
    [23]
    王利阁. 电动汽车充电桩直流电能表检定装置研究[D]. 长沙: 湖南大学, 2016.
    [24]
    隋争. 直接接入式直流电能表校验装置的难点探讨[J]. 科技与创新, 2015(24): 132, 134.
    [25]
    计光荣, 王恩, 马敏军, 等. 直流电能计量检测系统的准确性分析[J]. 化工自动化及仪表, 2020, 47(6): 477-481.
    [26]
    王亭亭, 崔伟群. 算法溯源简述[J]. 计量科学与技术, 2023, 67(5): 23-30.
    [27]
    王恩, 陈叶, 李博, 等. 直流电能静态与动态计量检测系统及准确性保证体系研究[J]. 中国计量, 2021(8): 94-96.
    [28]
    周力任, 朱力, 耿骥. 磁调制式直流电流比较仪精密测量应用拓展的探索[J]. 电气应用, 2023, 42(7): 59-64.
    [29]
    周力任, 朱力, 潘洋. 直流电流比较仪闭环传递特性的理论研究与试验验证[J]. 电气应用, 2021, 40(7): 30-36.
    [30]
    周力任, 朱力, 潘洋. 直流电流比较仪解调方式的研究[J]. 电测与仪表, 2020, 57(3): 148-152.
    [31]
    顾慰君, 单广智. 微处理器控制的多斜率积分模数转换技术[J]. 电子测量技术, 1983(1): 3-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (119) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return