Turn off MathJax
Article Contents
DING Chaomin, ZHANG Zhengdong, DU Biao, WANG Guixuan, LIU Fan, LI Qi, LI Ke. Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0259
Citation: DING Chaomin, ZHANG Zhengdong, DU Biao, WANG Guixuan, LIU Fan, LI Qi, LI Ke. Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2023.0259

Overview of the Interaction Between the Chemical Composition and the Main Physicochemical Properties of Diesel Fuel

doi: 10.12338/j.issn.2096-9015.2023.0259
  • Received Date: 2023-11-03
  • Accepted Date: 2023-12-07
  • Rev Recd Date: 2023-12-05
  • Available Online: 2024-01-22
  • In order to reduce the environmental pollution caused by the use of diesel fuel, and to promote the development of the automotive industry in the direction of more environmental protection and efficiency, China’s diesel quality has completed the upgrade from China Ⅳ to China Ⅵ, with increasingly stringent requirements on the physicochemical properties of diesel within the standards. The quality upgrade has a direct impact on the physicochemical properties of diesel fuel, which in turn is determined by its chemical composition. Therefore, investigating the relationship between the chemical composition and physicochemical properties of diesel fuel can help fuel producers to optimise diesel fuel formulations to meet higher quality requirements, and can also help users to choose diesel fuel products in accordance with their own needs in order to improve diesel fuel utilisation and reduce environmental pollution. This study reviews the intrinsic relationship between the chemical composition of diesel fuel and density, cetane number, lubricity, low temperature fluidity, sulfur-containing compounds, nitrogen-containing compounds and fatty acid methyl esters. This study provides a theoretical basis for diesel blending and quality upgrading, as well as a useful reference for sustainable energy development and environmental protection.
  • loading
  • [1]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用柴油: GB 19147—2016[S]. 北京: 中国标准出版社, 2016.
    [2]
    谢仁华. 柴油的储存安定性研究[J]. 石油炼制与化工, 2003, 34(4): 16-21. doi: 10.3969/j.issn.1005-2399.2003.04.004
    [3]
    白亚昊, 邹惠玲, 夏攀登,. 基于柴油介电特性快速检测其润滑性的方法研究[J]. 润滑与密封, 2019, 44(1): 129-132.
    [4]
    丁立群, 袁晓冰, 刘昌见. 1-甲基萘-正癸烷-1-十四烯-环丁砜体系液液相平衡数据测定及关联[J]. 化工学报, 2019, 70(10): 3899-3905.
    [5]
    YANG H, RING Z, BRIKER Y, et al. Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC–MS[J]. Fuel, 2002, 81(1): 65-74. doi: 10.1016/S0016-2361(01)00121-1
    [6]
    WANG Q, LI C, JIA R, et al. Rapid and simultaneous determination of fatty acid methyl esters and polycyclic aromatic hydrocarbons in diesel fuel by high-performance liquid chromatography with a selective backflush strategy[J]. Analytical Letters, 2020, 53(6): 834-843. doi: 10.1080/00032719.2019.1682005
    [7]
    CORREA S M, ARBILLA G. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust[J]. Atmospheric Environment, 2006, 40(35): 6821-6826. doi: 10.1016/j.atmosenv.2006.05.068
    [8]
    PAVLOVA A, PETROV S, MILINA R, et al. Determination of polycycloaromatic hydrocarbons in diesel fuel[J]. Chemistry and Technology of Fuels and Oils, 2004, 40(4): 275-278. doi: 10.1023/B:CAFO.0000041228.96056.8b
    [9]
    MACHAKANUR S, SAVALIA A, BHAKTHAVATSALAM V. Multivariate statistics for summarizing diesel feeds for flammability attributes using comprehensive two-dimensional gas chromatography[J]. Journal of Separation Science, 2021, 44(15): 2941-2949. doi: 10.1002/jssc.202001192
    [10]
    WEI Y J, ZHANG Y J, ZHU X D, et al. Effects of Diesel Hydrocarbon Components on Cetane Number and Engine Combustion and Emission Characteristics[J]. Applied Sciences-Basel, 2022, 12(7): 1.
    [11]
    LADOMMATOS N, GOACHER J. Equations for predicting the cetane number of diesel fuels from their physical properties[J]. Fuel, 1995, 74(7): 1083-1093. doi: 10.1016/0016-2361(95)00040-C
    [12]
    张永奎, 胡志海, 刘晓欣,. 柴油加氢改质过程烃类反应与十六烷值的关系[J]. 石油学报(石油加工), 2013, 29(3): 376-382.
    [13]
    IVANOVA L V, KOSHELEV V N, BUROV E A. Influence of the hydrocarbon composition of diesel fuels on their performance characteristics[J]. Petroleum Chemistry, 2014, 54(6): 466-472. doi: 10.1134/S0965544114060061
    [14]
    BARRA I, KHARBACH M, QANNARI E, et al. Predicting cetane number in diesel fuels using FTIR spectroscopy and PLS regression[J]. Vibrational Spectroscopy, 2020, 111: 1.
    [15]
    GRISHIN D. Depressant, antiwear, and antioxidant additives to hydrotreated diesel fuels with low and ultralow sulfur content[J]. Petroleum Chemistry, 2017, 57(10): 813-825. doi: 10.1134/S0965544117100097
    [16]
    MOZDZEN E C, WALL S W, BYFLEET W D. The no-harm performance of lubricity additives for low sulphur diesel fuels[J]. SAE transactions, 1998, 40: 1496-1503.
    [17]
    PICHUGIN V F, IVANOVA L V, BUROV E A. Improving the tribotechnical characteristics of metallic pairs in diesel fuel by using additives[J]. Chemistry and Technology of Fuels and Oils, 2013, 49(4): 309-312. doi: 10.1007/s10553-013-0446-4
    [18]
    WEI D P. The lubricity of diesel fuels[J]. Wear, 1986, 111(2): 217-235. doi: 10.1016/0043-1648(86)90221-8
    [19]
    韦淡平. 燃料润滑性的研究 Ⅰ. 柴油组分的磨损性能[J]. 石油学报(石油加工), 1986(3): 79-87.
    [20]
    韦淡平. 燃料油润滑性的研究 Ⅱ. 模型化合物试验[J]. 石油学报(石油加工), 1988(1): 90-99.
    [21]
    韦淡平. 燃料润滑性的研究 Ⅲ. 柴油的磨损性能[J]. 石油学报(石油加工), 1990(1): 15-19.
    [22]
    BARBOUR R H, RICKEARD D J, ELLIOTT N G. Understanding diesel lubricity[J]. SAE transactions, 2000, 1: 1556-1566.
    [23]
    雒亚东, 凌凤香, 赵国利,. 氧族化合物对柴油润滑性影响的研究[J]. 科学技术与工程, 2014, 14(27): 220-223.
    [24]
    WåHLIN P, PALMGREN F, VAN DINGENEN R, et al. Pronounced decrease of ambient particle number emissions from diesel traffic in Denmark after reduction of the sulphur content in diesel fuel[J]. Atmospheric Environment, 2001, 35(21): 3549-3552. doi: 10.1016/S1352-2310(01)00066-8
    [25]
    刘娟, 王洪国, 廖克俭. 改性活性炭吸附脱除柴油中的硫化物[J]. 应用化工, 2013, 42(1): 102-104,109.
    [26]
    殷长龙, 赵会吉, 徐永强, 等. 柴油深度加氢脱硫过程中硫化物转化规律的研究[J]. 中国石油大学学报(自然科学版), 2007, 31(4): 134-138.
    [27]
    BU J, LOH G, GWIE C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal, 2011, 166(1): 207-217. doi: 10.1016/j.cej.2010.10.063
    [28]
    HUA R, LI Y, LIU W, et al. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector[J]. Journal of Chromatography A, 2003, 1019(1-2): 101-109. doi: 10.1016/j.chroma.2003.08.048
    [29]
    LIANG F Y, LU M M, BIRCH M E, et al. Determination of polycyclic aromatic sulfur heterocycles in diesel particulate matter and diesel fuel by gas chromatography with atomic emission detection[J]. Journal of Chromatography A, 2006, 1114(1): 145-153. doi: 10.1016/j.chroma.2006.02.096
    [30]
    MA X, SAKANISHI K, MOCHIDA I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J]. Industrial & Engineering Chemistry Research, 1994, 33(2): 218-222.
    [31]
    GAO L, LIU P, GU T, et al. Characterization of sulfur compounds in diesel fractions[J]. Journal of Fuel Chemistry and Technology, 2009, 2: 183-188.
    [32]
    刘明星, 刘泽龙, 李颖, 等. 固相萃取法/全二维气相色谱-飞行时间质谱测定柴油及其加氢产品中的含硫化合物[J]. 石油炼制与化工, 2020, 51(4): 96-104. doi: 10.3969/j.issn.1005-2399.2020.04.019
    [33]
    CHENG Y, ZHENG G, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China[J]. Science advances, 2016, 2(12): e1601530. doi: 10.1126/sciadv.1601530
    [34]
    CHENG X, ZHAO T, FU X, et al. Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry[J]. Fuel Processing Technology, 2004, 85(13): 1463-1472. doi: 10.1016/j.fuproc.2003.10.004
    [35]
    杨永坛. 催化柴油中含氮化合物类型分布的气相色谱分析方法[J]. 色谱, 2008, 26(4): 478-483.
    [36]
    RUI B, CHAI Y, ZHANG C, et al. Fluid catalytic cracking feed hydrotreatment and its impact on the distribution of sulfur and nitrogen compounds in FCC diesel[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(1): 69.
    [37]
    史得军, 陈菲, 梁迎春, 等. 固相萃取/气相色谱-质谱分析催化裂化柴油中的含氮化合物[J]. 分析测试学报, 2018, 37(12): 1490-1494. doi: 10.3969/j.issn.1004-4957.2018.12.015
    [38]
    ROSSEMYR L I. Cold flow properties and response to cold flow improver of some typical fuel oils[J]. Industrial & Engineering Chemistry Product Research and Development, 1979, 18(3): 227-230.
    [39]
    LU Y, ZHANG X, YAO G C. Exploration of the function of diesel fuel additives influencing flow[J]. Energy & Fuels, 2011, 25(5): 2115-2118.
    [40]
    SOLIMAN E A, ELKATORY M R, HASHEM A I, et al. Synthesis and performance of maleic anhydride copolymers with alkyl linoleate or tetra-esters as pour point depressants for waxy crude oil[J]. Fuel, 2018, 211: 535-547. doi: 10.1016/j.fuel.2017.09.038
    [41]
    XU J, JIANG H, LI T, et al. Effect of comb-type copolymers with various pendants on flow ability of heavy crude oil[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5204-5212.
    [42]
    姜少华, 周剑鸣, 张玉贞. 柴油正构烷烃含量与其低温性质关系研究[J]. 石油与天然气化工, 2002, 31(5): 243-245,226. doi: 10.3969/j.issn.1007-3426.2002.05.005
    [43]
    VRABLIK A, VELVARSKA R, STEPANEK K, et al. Rapid models for predicting the low-temperature behavior of diesel[J]. Chemical Engineering & Technology, 2019, 42(4): 735-743.
    [44]
    KIRGINA M, BOGDANOV I, ALTYNOV A, et al. Studying the impact of different additives on the properties of straight-run diesel fuels with various hydrocarbon compositions[J]. Oil & Gas Science and Technology-Revue D Ifp Energies Nouvelles, 2021, 76: 40.
    [45]
    NABI M N, MINAMI M, OGAWA H, et al. Attempt and mechanism of ultra low emission and high performance diesel combustion with highly oxygenated fuel.[J]. Transactions of the Japan Society of Mechanical Engineers. Series B, 2000, 66(642): 612-618. doi: 10.1299/kikaib.66.612
    [46]
    LIAQUAT A, MASJUKI H, KALAM M, et al. Application of blend fuels in a diesel engine[J]. Energy Procedia, 2012, 14: 1124-1133. doi: 10.1016/j.egypro.2011.12.1065
    [47]
    KUMBHAR V, PANDEY A, SONAWANE C R, et al. Statistical analysis on prediction of biodiesel properties from its fatty acid composition[J]. Case Studies in Thermal Engineering, 2022, 30: 101775. doi: 10.1016/j.csite.2022.101775
    [48]
    FOLAYAN A J, ANAWE P A L, ALADEJARE A E, et al. Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass[J]. Energy Reports, 2019, 5: 793-806. doi: 10.1016/j.egyr.2019.06.013
    [49]
    KNOTHE G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters[J]. Fuel Processing Technology, 2005, 86(10): 1059-1070. doi: 10.1016/j.fuproc.2004.11.002
    [50]
    ZULETA E C, RIOS L A, BENJUMEA P N. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends[J]. Fuel Processing Technology, 2012, 102: 96-101. doi: 10.1016/j.fuproc.2012.04.018
    [51]
    RODRIGUES JR J d A, CARDOSO F d P, LACHTER E R, et al. Correlating chemical structure and physical properties of vegetable oil esters[J]. Journal of the American Oil Chemists' Society, 2006, 83(4): 353-357. doi: 10.1007/s11746-006-1212-0
    [52]
    GIAKOUMIS E G. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation[J]. Renewable Energy, 2013, 50: 858-878. doi: 10.1016/j.renene.2012.07.040
    [53]
    RAMIREZ-VERDUZCO L F, RODRIGUEZ-RODRIGUEZ J E, JARAMILLO-JACOB A D. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition[J]. Fuel, 2012, 91(1): 102-111. doi: 10.1016/j.fuel.2011.06.070
    [54]
    HOEKMAN S K, BROCH A, ROBBINS C, et al. Review of biodiesel composition, properties, and specifications[J]. Renewable and sustainable energy reviews, 2012, 16(1): 143-169. doi: 10.1016/j.rser.2011.07.143
    [55]
    KNOTHE G, STEIDLEY K R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity[J]. Energy & Fuels, 2005, 19(3): 1192-1200.
    [56]
    Kumar N. Oxidative stability of biodiesel: Causes, effects and prevention[J]. Fuel, 2017, 190: 328-350. doi: 10.1016/j.fuel.2016.11.001
    [57]
    孙鑫源, 李长秀. 全二维气相色谱技术在石油馏分组成分析中的应用研究进展[J]. 石油化工, 2023, 52(7): 1019-1027. doi: 10.3969/j.issn.1000-8144.2023.07.019
    [58]
    段为宇, 郭蓉, 刘海龙, 等. 柴油加氢装置长周期运行影响因素及应用[J]. 当代化工, 2023, 52(9): 2210-2213. doi: 10.3969/j.issn.1671-0460.2023.09.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (122) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return