Volume 67 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
LIU Yiling, NIMA Quzong, PAN Weijiang, HAO Jingkun. Impact of High Altitude on Breath Alcohol Analyzer Measurements[J]. Metrology Science and Technology, 2023, 67(8): 36-42. doi: 10.12338/j.issn.2096-9015.2023.0267
Citation: LIU Yiling, NIMA Quzong, PAN Weijiang, HAO Jingkun. Impact of High Altitude on Breath Alcohol Analyzer Measurements[J]. Metrology Science and Technology, 2023, 67(8): 36-42. doi: 10.12338/j.issn.2096-9015.2023.0267

Impact of High Altitude on Breath Alcohol Analyzer Measurements

doi: 10.12338/j.issn.2096-9015.2023.0267
  • Received Date: 2023-11-10
  • Accepted Date: 2023-11-14
  • Rev Recd Date: 2023-11-23
  • Available Online: 2023-11-30
  • Publish Date: 2023-08-18
  • The breath alcohol analyzer, or breathalyzer, is essential for measuring breath alcohol content in law enforcement, particularly in drunk driving cases. Operating on two principal mechanisms - fuel cell and infrared absorption - these devices are deployed at various altitudes by traffic control authorities across China. Accurate readings are critical for ensuring rigorous and fair law enforcement. According to China’s National Verification Regulation JJG657-2019 for breath alcohol analyzers, these instruments are tested using first-class national certified reference materials (CRMs C2H5OH/Air) or ethanol standard gas. Appendix C indicates that the reference materials’ property values, measured in mg/L, are influenced by atmospheric pressure, necessitating corrections based on the pressure at the usage location. However, the extent to which atmospheric pressure affects the breathalyzer’s accuracy remains understudied. This study investigates the impact of altitude on measurement accuracy for both types of breathalyzers, conducting field verifications at 20 m and 3560 m altitudes. The results show that, for fuel cell type analyzers commonly used by traffic police, the deviation at critical points for determining drunk driving does not exceed 0.04 mg/L. Altitude impacts on these devices fall within a manageable error range, preserving measurement accuracy. Thus, accurate breath alcohol measurement for drunk driving law enforcement remains viable in China’s high-altitude regions.
  • loading
  • [1]
    赵建南, 金美兰. 酒后驾车与呼气酒精含量检验[J]. 计量技术, 2004(11): 42.
    [2]
    董葵, 陆宇. 酒后驾驶检测技术及设备应用现状和发展[J]. 中国公共安全(学术版), 2014(3): 65-69.
    [3]
    邹永良, 吴昌成, 陆宇, 等. 呼出气体酒精含量检测仪技术发展及使用管理研究[J]. 中国人民公安大学学报(自然科学版), 2022, 28(2): 58-63.
    [4]
    国家市场监督管理总局. 呼出气体酒精含量检测仪计量检定规程: JJG 657-2019[S]. 北京: 中国标准出版社, 2019.
    [5]
    杨中元, 潘卫江, 周婧, 等. 呼出气体酒精含量检测仪检定用乙醇气体发生源的研制[J]. 计量与测试技术, 2022, 49(10): 38-40.
    [6]
    许建军, 贾会, 马长征, 等. 动态体积法乙醇气体发生装置的研制[J]. 化学分析计量, 2022, 31(10): 66-70.
    [7]
    黄静妍. 中外呼出气体酒精含量探测器质量管理之比较[J]. 计量技术, 2007(2): 62-63.
    [8]
    国家质量监督检验检疫总局. 呼出气体酒精含量检测仪国家标准: GB/T 21254-2017[S]. 北京: 中国标准出版社, 2017.
    [9]
    刘沂玲, 刘春宇, 蔡春洪. JJG657-2019《呼出气体酒精含量检测仪检定规程》解读[J]. 中国计量, 2020(7): 123-126.
    [10]
    OIML. Evidential breath analysers : OIML R126-2021 [S]: Paris, 2021.
    [11]
    刘卓, 陈田新, 马星宇, 等. 检定和使用呼出气体酒精含量探测器中影响因素分析与探讨[J]. 计量技术, 2013(5): 59-61.
    [12]
    卢利强, 方学新. 在交通执法中呼气酒精检测的应用研究[J]. 中国公共安全(学术版), 2011(4): 116-119.
    [13]
    孟祥海. 基于STM32F407ZG的呼气式酒精含量检测仪的研究[D]. 天津: 河北工业大学, 2015.
    [14]
    胡稳. 基于ARM的呼气式酒精浓度检测系统设计[D]. 郑州: 郑州大学, 2016.
    [15]
    Workman T E. The Science Behind Breath Testing for Ethanol[J]. university of massachusetts law review, 2012(1): 4.
    [16]
    孔小平, 李博. 湿气法呼出气体酒精含量探测器标准气体发生装置的设计和实现[J]. 计量技术, 2014(9): 19-22.
    [17]
    王维康, 王显建, 郑宏昌. 呼出气体酒精含量检测仪溯源技术探讨[J]. 计量技术, 2015(7): 20-23.
    [18]
    蔡开城. 一种便携式呼出气体酒精含量检测仪智能检定装置[J]. 计量与测试技术, 2023, 50(4): 43-45. doi: 10.15988/j.cnki.1004-6941.2023.4.011
    [19]
    蔡晓燕. 浅谈呼出气体酒精含量检测仪检定装置[J]. 计量与测试技术, 2020, 47(2): 67-69.
    [20]
    付欣艳. 浅谈呼出气体酒精含量探测器[J]. 计量与测试技术, 2014, 41(7): 72, 74.
    [21]
    Li R W , Xiong Y P , Wang Y J , et al. Research on Infrared Breath Alcohol Test Based on Differential Absorption[C]. IEEE Computer Society, 2009.
    [22]
    王彪. 燃料电池型酒精气体化学传感器及其应用[J]. 仪器仪表与分析监测, 1986(2): 28-29.
    [23]
    贺平, 金航. 一种新型燃料电池型酒精传感器及其制备方法: CN1609607 [P]. 2005-04-27.
    [24]
    张小水, 高胜国, 古瑞琴, 等. 燃料电池式乙醇传感器的研制[J]. 仪表技术与传感器, 2009(S1): 189-191.
    [25]
    顾伟军, 史晓东, 彭亦功. 基于电化学原理的燃料电池型酒精传感器技术与设计[C]. 中国仪器仪表学会过程检测控制仪表分会, 2007.
    [26]
    熊业攀. 基于嵌入式Linux的红外呼气酒精检测系统的研究及开发[D]. 杭州: 浙江理工大学, 2010.
    [27]
    陈雅. 基于激光探测的酒驾测试方法研究与试验[J]. 激光杂志, 2018, 39(9): 72-76.
    [28]
    Norio Fujitsuka, Masatoshi Yonemura, Kiyomi Sakakibara. Alcohol detection in exhale air using NDIR aborbtion method[J]. R& D review of Toyota CRDL, 2014, 45(2): 29-34.
    [29]
    Alcotest® 9510 Technical Manual. Draeger Safety Diagnostics, Inc[EB/OL].https://www.draeger.com/.
    [30]
    Intoxilyzer-9000-Brochure[EB/OL]. https://www.alcoholtest.com/intoxilyzer-9000/.
    [31]
    荆宝生. 对大气压强微观本质的认识[J]. 中学物理, 2014, 32(6): 61-62.
    [32]
    吴浩然. 大气压强和高度的关系[J]. 张家口师专学报(自然科学版), 1994(5): 25-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (197) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return