Volume 68 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CAI Xiangyu, HE Xiaomei, QU Jiansu, YU Pu, JIA Changyi. Research on the Construction of Standardized Test Datasets Based on Characterization Parameters[J]. Metrology Science and Technology, 2024, 68(3): 45-51. doi: 10.12338/j.issn.2096-9015.2023.0288
Citation: CAI Xiangyu, HE Xiaomei, QU Jiansu, YU Pu, JIA Changyi. Research on the Construction of Standardized Test Datasets Based on Characterization Parameters[J]. Metrology Science and Technology, 2024, 68(3): 45-51. doi: 10.12338/j.issn.2096-9015.2023.0288

Research on the Construction of Standardized Test Datasets Based on Characterization Parameters

doi: 10.12338/j.issn.2096-9015.2023.0288
  • Received Date: 2023-11-17
  • Accepted Date: 2024-01-02
  • Rev Recd Date: 2024-01-18
  • Publish Date: 2024-03-01
  • The fitting of geometric elements is a critical step in evaluating errors in measurement evaluation software. Different approximation methods, evaluation strategies, and the rounding of significant figures can all influence the evaluation results, leading to inconsistent outcomes from different measurement analysis software for the same measurement data. To address the difficulty in certifying the evaluation algorithms for geometric element fitting, this paper analyzes and discusses the basis and rules for generating standardized input test datasets. Characterization parameters for different geometric elements are determined, enabling the dynamic construction of standardized input test datasets based on these parameters. Using the standardized input test datasets, the least squares double fitting algorithm and geometric tolerance evaluation algorithm are studied to generate standardized output test datasets. The evaluation results are then compared and verified with Zeiss' CALYPSO measurement analysis software. By comparing the dynamically constructed standardized output test datasets with the evaluation results from the measurement evaluation software, the certification of the least squares fitting-based evaluation algorithms for different geometric elements in the measurement evaluation software is completed.
  • loading
  • [1]
    Hopp T H, Levenson M S. Performance Measures for Geometric Fitting in the NIST Algorithm Testing and Evaluation Program for Coordinate Measurement Systems[J]. Journal of Research of the National Institute of Standards and Technology, 1995, 100(5): 563-574. doi: 10.6028/jres.100.042
    [2]
    Craig M. Shakarji. Least-Squares Fitting Algorithms of the NIST Algorithm Testing System[J]. Journal of Research of the National Institute of Standards and Technology. DOI: 10.6028/jres.103.043.
    [3]
    马英宝. 坐标测量机测量软件系统开发与应用技术研究[D]. 合肥: 合肥工业大学, 2018.
    [4]
    李航. 坐标测量机软件系统开发及几何量评定技术研究[D]. 合肥: 合肥工业大学, 2010.
    [5]
    岳志诚. 基于三维点云的几何体拟合算法研究[D]. 武汉: 华中科技大学, 2021.
    [6]
    邓军. 三维点云处理和规则曲面拟合算法研究[D]. 绵阳: 西南科技大学, 2015.
    [7]
    国家市场监督管理总局. 产品几何技术规范(GPS)几何精度的检测与验证 第1部分 基本概念和测量基础 符号术语测量条件和程序: GB/T 40742.1-2021[S]. 北京: 中国质检出版社, 2022.
    [8]
    国家质量监督检验检疫总局. 产品几何技术规范(GPS)坐标测量机的验收检测和复检检测 第6部分: 计算高斯拟合要素的误差的评定: GB/T 16857.6-2006[S]. 北京: 中国质检出版社, 2018.
    [9]
    Gábor Lukács, Martin R R, Marshall A D. Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation[J]. Heidelberg:Springer, 1998, 1: 671-686.
    [10]
    杜福洲, 王小强, 段桂江. 基于最小二乘法的几何元素拟合算法研究[J]. 航空制造技术, 2011(21): 65-68. doi: 10.3969/j.issn.1671-833X.2011.21.012
    [11]
    张华, 石照耀, 张白. 三维几何形状判别及其误差评定研究[J]. 仪器仪表学报, 2014, 35(6): 1217-1222.
    [12]
    姜菲菲. 几何误差检验中的GPS滤波技术和拟合技术研究[D]. 郑州: 郑州大学, 2022.
    [13]
    Alhadi K, Zhanqun S, Abubakar U, et al. Improved algorithm for minimum zone of roundness error evaluation using alternating exchange approach[J]. Measurement Science and Technology, 2022, 33(4): 1.
    [14]
    Zhang L, Liu L L, Huang H C, et al. Fitting Spherical Surface and Evaluating Sphericity Error Based on the Minimum Zone Principle[J]. Applied Mechanics and Materials, 2014, 3634(687-691): 1373-1376.
    [15]
    Chakguy P, B TT, Shivakumar R. Support Vector Regression for Determination of Minimum Zone[J]. Journal of Manufacturing Science and Engineering, 2003, 125(4): 736-739. doi: 10.1115/1.1596572
    [16]
    董青林. 三维圆度误差数字化检测与评定算法研究[D]. 长沙: 湖南大学, 2014.
    [17]
    吴伟仁, 姜黎, 张之敬, 等. 以计算几何为基础的圆度误差评定算法[J]. 宇航学报, 2012, 33(6): 816-822.
    [18]
    汤洁, Frank Härtig, 石照耀. 计量软件溯源中的TraCIM软件认证系统[J]. 工具技术, 2017, 51(12): 4. doi: 10.3969/j.issn.1000-7008.2017.12.031
    [19]
    ASME. The American society of mechanical engineers. Methods for performance evaluation of coordinate measuring system : ASME B89.4. 10-2021 [S]. ASME, 2021.
    [20]
    PTB. Traceability for Computationally-Intensive Metrology Validation of Gaussian Algorithm Implementation[EB/OL]. [2023-11-01]. https://tracim.ptb.de/tracim/customer/service_gauss.jsf.
    [21]
    John Raffaldi, Craig M Shakarji. Evaluating Coordinate Measuring Machine Software Geometry Uncertainties Using National and International Standards[C]. Measurement Science Conference, 2010.
    [22]
    Cui X, Wei H, Wang W. Research and evaluation of geometric element data fitting software for coordinate measurement machine[C]. Tenth International Symposium on Precision Engineering Measurements and Instrumentation, 2019.
    [23]
    Cathleen Diaz, Theodore H Hopp. Testing of coordinate measuring system software[C]. American Society for Quality Control Measurement Quality Conference, 1993.
    [24]
    Hartig F, Muller B, Wendt K, et al. Online validation of metrological software using the TraCIM System[C]. IMEKO World Congress, 2015.
    [25]
    Bui H S, Vorburger V T. Surface metrology algorithm testing system[J]. Precision Engineering, 2007, 31(3): 218-225. doi: 10.1016/j.precisioneng.2007.01.002
    [26]
    Zhang D X, Zhang C, Wang B, et al. Unified functional tolerancing approach for precision cylindrical components[J]. International Journal of Production Research, 2005, 43(1): 25-47. doi: 10.1080/00207540412331282060
    [27]
    崔学伟. 虚拟坐标测量机的几何元素拟合及评价方法研究[D]. 杭州: 中国计量大学, 2019.
    [28]
    国家质量监督检验检疫总局. 直线检测: GB/T 11336-2004 [S]. 北京: 中国标准出版社, 2004.
    [29]
    国家质量监督检验检疫总局. 圆度误差的评定 二点、三点法: GB/T 4380-2004[S]. 北京: 中国标准出版社, 2005.
    [30]
    国家质量监督检验检疫总局. 产品几何技术规范(GPS)几何公差检测与验证: GB/T 1958-2017[S]. 北京: 中国质检出版社, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (47) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return