Volume 67 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CHEN Weisong, HUANG Zhixun, WANG Xueyan, NIU Feng. The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array[J]. Metrology Science and Technology, 2023, 67(11): 10-16. doi: 10.12338/j.issn.2096-9015.2023.0290
Citation: CHEN Weisong, HUANG Zhixun, WANG Xueyan, NIU Feng. The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array[J]. Metrology Science and Technology, 2023, 67(11): 10-16. doi: 10.12338/j.issn.2096-9015.2023.0290

The Structure and Performance Study of Single-Loop Spiral Differential Microphone Array

doi: 10.12338/j.issn.2096-9015.2023.0290
  • Received Date: 2023-11-18
  • Accepted Date: 2023-12-08
  • Rev Recd Date: 2023-12-12
  • Available Online: 2023-12-20
  • Publish Date: 2023-11-18
  • This paper investigates a single-loop spiral differential microphone array, engineered based on the Jacobi-Anger expansion. The circular differential microphone array it employs is capable of generating a frequency-invariant beampattern that can be steered in any direction. However, this array faces performance deterioration due to the zero value of the Bessel function at specific frequencies, leading to nulls in white noise gain and directivity factor. The concentric circular microphone array, while addressing these nulls, requires a larger number of microphones and a more extensive array distribution area. We propose a single-loop spiral differential microphone array, structured on the Archimedes spiral. The study compares and analyzes differences in white noise gain, directivity factor, and beam pattern between the proposed array and the conventional circular differential array. The impact of spiral parameters on the array’s performance is also examined. Simulation results demonstrate that the single-loop spiral differential array mitigates the issues of deep nulls in white noise gain and directivity factor at certain frequencies, observed in the circular differential array. This is achieved without increasing the microphone count, showcasing superior performance. Furthermore, as the number of microphones increases, the array’s beamforming performance is progressively enhanced.
  • loading
  • [1]
    BENESTY J, CHEN J, HUANG Y. Microphone array signal processing[M]. Berlin: Springer, 2008: 39-66.
    [2]
    YAN S. Broadband array processing[M]. Singapore: Springer, 2019: 131-219.
    [3]
    秦朝琪, 黄杰, 白滢, 等. 机动车行进中鸣笛声监测的校准方法研究[J]. 计量科学与技术, 2021, 65(8): 42-45.
    [4]
    刘焜, 牛锋, 黄杰. 机动车非现场执法用监控设备计量技术法规综述[J]. 计量科学与技术, 2022, 66(7): 50-53.
    [5]
    陈左龙, 陈华伟. 传声器失配误差对差分传声器圆阵主瓣指向的影响特性[J]. 声学学报, 2022, 47(5): 541-556.
    [6]
    郑毅豪, 巩朋成, 杜帮华, 等. 圆形差分麦克风阵列的二阶波束形成器设计[J]. 湖北工业大学学报, 2020, 35(2): 42-47.
    [7]
    YAN L, HUANG W, KLEIJN W B, et al. Phase error analysis for first-order linear differential microphone arrays[C]. International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2022: 1-5.
    [8]
    JIN J, BENESTY J, HUANG G, et al. On differential beamforming with nonuniform linear microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 1840-1852. doi: 10.1109/TASLP.2022.3178229
    [9]
    HUANG W, FENG J. Robust steerable differential beamformer for concentric circular array with directional microphones[C]. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2022: 319-323.
    [10]
    BORRA F, BERNARDINI A, BERTULETTI I, et al. Arrays of first-order steerable differential microphones[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 751-755.
    [11]
    黄公平. 面向语音通信与交互的麦克风阵列语音增强方法研究[D]. 西安: 西北工业大学, 2022.
    [12]
    BENESTY J, CHEN J. Study and design of differential microphone arrays[M]. Berlin: Springer, 2012: 33-179.
    [13]
    BENESTY J, CHEN J, COHEN I. Design of circular differential microphone arrays[M]. Berlin: Springer, 2015: 33-163.
    [14]
    LENG X, CHEN J, BENESTY J. A new method to design steerable first-order differential beamformers[J]. IEEE Signal Processing Letters, 2021, 28: 563-567. doi: 10.1109/LSP.2021.3059533
    [15]
    BENESTY J, COHEN I, CHEN J. Array beamforming with linear difference equations[M]. Cham: Springer, 2021: 23-127.
    [16]
    潘超, 黄公平, 陈景东. 面向语音通信与交互的麦克风阵列波束形成方法[J]. 信号处理, 2020, 36(6): 804-815.
    [17]
    张敏, 潘翔. 基于差分麦克风阵列的恒定束宽波束形成研究[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(4): 20-24.
    [18]
    HUANG G, COHEN I, CHEN J, et al. Continuously steerable differential beamformers with null constraints for circular microphone arrays[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1248-1258. doi: 10.1121/10.0001770
    [19]
    ZHAO L, BENESTY J, CHEN J. Design of robust differential microphone arrays with the Jacobi–Anger expansion[J]. Applied Acoustics, 2016, 110: 194-206. doi: 10.1016/j.apacoust.2016.03.015
    [20]
    HUANG G, BENESTY J, CHEN J. On the design of frequency-invariant beampatterns with uniform circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(5): 1140-1153. doi: 10.1109/TASLP.2017.2689681
    [21]
    WANG Y, YANG Y, HE Z, et al. Robust superdirective frequency-invariant beamforming for circular sensor arrays[J]. IEEE Signal Processing Letters, 2017, 24(8): 1193-1197. doi: 10.1109/LSP.2017.2712151
    [22]
    WANG J, YANG F, YANG J. Insights into the MMSE-based frequency-invariant beamformers for uniform circular arrays[J]. IEEE Signal Processing Letters, 2022, 29: 2432-2436. doi: 10.1109/LSP.2022.3224687
    [23]
    WANG J, YANG F, YANG J. A perspective on fully steerable differential beamformers for circular arrays[J]. IEEE Signal Processing Letters, 2023, 30: 648-652. doi: 10.1109/LSP.2023.3280852
    [24]
    HUANG G, BENESTY J, CHEN J. Design of robust concentric circular differential microphone arrays[J]. The Journal of the Acoustical Society of America, 2017, 141(5): 3236-3249. doi: 10.1121/1.4983122
    [25]
    HUANG G, CHEN J, BENESTY J. On the design of robust steerable frequency-invariant beampatterns with concentric circular microphone arrays[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 506-510.
    [26]
    HUANG G, CHEN J, BENESTY J. Insights into frequency-invariant beamforming with concentric circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(12): 2305-2318. doi: 10.1109/TASLP.2018.2862826
    [27]
    ZHAO X, HUANG G, CHEN J, et al. An improved solution to the frequency-invariant beamforming with concentric circular microphone arrays[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 556-560.
    [28]
    BERNARDINI A, D’ARIA M, SANNINO R, et al. Efficient continuous beam steering for planar arrays of differential microphones[J]. IEEE Signal Processing Letters, 2017, 24(6): 794-798. doi: 10.1109/LSP.2017.2695082
    [29]
    BORRA F, BERNARDINI A, ANTONACCI F, et al. Efficient implementations of first-order steerable differential microphone arrays with arbitrary planar geometry[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1755-1766. doi: 10.1109/TASLP.2020.2998283
    [30]
    HUANG G, CHEN J, BENESTY J, et al. Steerable differential beamformers with planar microphone arrays[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2020, 2020: 1-18. doi: 10.1186/s13636-019-0169-5
    [31]
    同济大学数学系. 高等数学(上册)[M]. 第7版. 北京: 高等教育出版社, 2014: 371-372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (65) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return