Volume 67 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIANG Qiumin, WANG Min, WANG Wenxia, WANG Ke, ZHENG Huifeng. Research Progress on Interferometric Fiber Optic Hydrophone Signal Demodulation Algorithm[J]. Metrology Science and Technology, 2023, 67(11): 17-23, 78. doi: 10.12338/j.issn.2096-9015.2023.0293
Citation: LIANG Qiumin, WANG Min, WANG Wenxia, WANG Ke, ZHENG Huifeng. Research Progress on Interferometric Fiber Optic Hydrophone Signal Demodulation Algorithm[J]. Metrology Science and Technology, 2023, 67(11): 17-23, 78. doi: 10.12338/j.issn.2096-9015.2023.0293

Research Progress on Interferometric Fiber Optic Hydrophone Signal Demodulation Algorithm

doi: 10.12338/j.issn.2096-9015.2023.0293
  • Received Date: 2023-11-20
  • Accepted Date: 2023-12-08
  • Rev Recd Date: 2023-12-09
  • Available Online: 2023-12-15
  • Publish Date: 2023-11-18
  • Interferometric fiber optic hydrophones represent a novel class of hydrophones offering numerous benefits over traditional devices. The accuracy in capturing underwater acoustic signals is intricately linked to the employed demodulation algorithms. This paper briefly outlines the construction and operational principles of these hydrophones, with a focus on comparing and analyzing the principles and developments of demodulation algorithms, particularly the Phase Generated Carrier (PGC) and the 3×3 coupler approaches. It delineates the attributes, strengths, and limitations of these primary demodulation algorithms and proposes potential avenues for future research.
  • loading
  • [1]
    Kirkendall C K, Dandridge A. Overview of high performance fibre-optic sensing[J]. Journal of Physics D:Applied Physics, 2004, 37(18): R197. doi: 10.1088/0022-3727/37/18/R01
    [2]
    Liao Y, Austin E, Nash J P, et al. Highly Scalable Amplified Hybrid TDM/DWDM Array Architecture for Interferometric Fiber-Optic Sensor Systems[J]. Journal of Lightwave Technology, 2013, 31(6): 882-888. doi: 10.1109/JLT.2012.2234084
    [3]
    尚凡, 戚悦, 马丽娜, 等. 基于光纤光栅的时分复用传感阵列相位噪声研究[J]. 光学学报, 2021, 41(13): 93-103.
    [4]
    朱辉庆, 刘姗琪, 黄文涛. 光纤水听器技术的发展概况及军事应用[J]. 光纤与电缆及其应用技术, 2017(4): 5-8.
    [5]
    孟洲, 陈伟, 王建飞, 等. 光纤水听器技术的研究进展[J]. 激光与光电子学进展, 2021, 58(13): 123-143.
    [6]
    张仁和, 倪明. 光纤水听器的原理与应用[J]. 物理, 2004(7): 503-507.
    [7]
    J A Bucaro, H D Dardy, E Carome. Fiber-optic Hydrophone[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1302-1304. doi: 10.1121/1.381624
    [8]
    苑立波, 童维军, 江山, 等. 我国光纤传感技术发展路线图[J]. 光学学报, 2022, 42(1): 9-42.
    [9]
    Cheng K, Shang X, Cheng X. The digitization of Michelson interferometer [C]. Electronics and Optoelectronics (ICEOE), 2011 International Conference on. IEEE, 2011.
    [10]
    唐继. Mach-Zehnder 光纤干涉仪相位检测方案研究[J]. 传感技术学报, 2000, 13(2): 96100.
    [11]
    Tsutsumi Y, Takama S, Ohashi M, et al. Vibration sensing utilizing polarization dependent loss of LPFG and Sagnac loop[C]. Opto Electronics and Communications Conference (OECC). IEEE, 2012.
    [12]
    Y J Rao, M R Cooper, D A Jackson, et al. Absolute strain measurement using an in-fiberBragg-grating-based Fabry-Perot Sensor[J]. Electronics Letters, 2000, 36(8): 708-709. doi: 10.1049/el:20000359
    [13]
    陈毅, 张军, 张敏, 等. 20Hz~1Hz 光纤水听器相移灵敏度校准[J]. 光子学报, 2011, 40(11): 1686-1691.
    [14]
    初凤红, 魏双娇. 光纤振动传感器相位解调算法研究综述[J]. 上海电力大学学报, 2021, 37(3): 247-252.
    [15]
    张雅彬. 光纤水听器对各种信号解调特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    [16]
    Gui L, Wu X, Yu B, et al. High-stability PGC demodulation algorithm based on a reference fiber-optic interferometer with insensitivity to phase modulation depth[J]. Journal of Lightwave Technology, 2021, 39(21): 6968-6975. doi: 10.1109/JLT.2021.3107204
    [17]
    A Dandridge, A B Tvelen, T G Glallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE Journal of Quantum Electronics, 1982, QE-18(10): 1647-1653.
    [18]
    Christian T R, Frank P A, Houston B H. Real-time analog and digital demodulator for interferometric fiber optic sensors[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1994, 2191: 324-336.
    [19]
    Yu Z, Dai H, Zhang M, et al. High stability and low harmonic distortion PGC demodulation technique for interferometric optical fiber sensors[J]. Optics & Laser Technology, 2019, 109: 8-13.
    [20]
    Yu Z, Dahir A K A, Dai H, et al. Distributed optical fiber vibration sensors based on unbalanced Michelson interferometer and PGC demodulation[J]. Journal of Optics, 2021, 50: 1-6. doi: 10.1007/s12596-020-00622-6
    [21]
    He J, Wang L, Li F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. Journal of Lightwave Technology, 2010, 28(22): 3258-3265.
    [22]
    肖文哲, 程静, 张大伟, 等. 用于光纤干涉传感器的高稳定PGC解调技术[J]. 光电工程, 2022, 49(3): 57-68.
    [23]
    崔杰, 刘亭亭, 肖灵. 干涉型光纤水听器PGC解调的参数估计方法[J]. 应用声学, 2017, 36(5): 409-416.
    [24]
    Fitzgibbon A W, Pilu M, Fisher R B. Direct least squares fitting of ellipses[C]. Proceedings of 1h international conference on pattern recognition. IEEE, 1996.
    [25]
    王彦, 蒋超, 朱伟, 等. 基于Lissajous输出拟合的非平衡M-Z干涉仪相位解调[J]. 仪器仪表学报, 2023, 44(2): 84-92.
    [26]
    汪云云, 黄俊斌, 顾宏灿. 基于3×3耦合器的信号幅值系数调整研究[J]. 舰船电子工程, 2021, 41(7): 193-196.
    [27]
    Sheem S K. Optical fiber interferometers with [3× 3] directional couplers: Analysis[J]. Journal of Applied Physics, 1981, 52(6): 3865-3872. doi: 10.1063/1.329853
    [28]
    张硕, 王敏, 王珂, 等. 针对3×3耦合器幅相非对称的光纤水听器解调方法[J]. 仪器仪表学报, 2023, 44(2): 32-41.
    [29]
    张华勇, 王利威, 施清平, 等. 光纤水听器时分复用系统通过3×3耦合器信号解调的一种新算法[J]. 中国激光, 2011, 38(5): 168-174.
    [30]
    郭银景, 王蕾, 苏铭玥, 等. 光纤水听器解调技术研究进展[J]. 光谱学与光谱分析, 2022, 42(4): 1017-1021.
    [31]
    孔明阳, 樊融, 初凤红, 等. 基于3×3耦合器的分布反馈激光器振动传感解调算法[J]. 科学技术与工程, 2023, 23(21): 9113-9121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (103) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return