Volume 67 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
SANG Jinqiu, HUANG Bing, QIN Zhaoqi, WANG Xueyan, LU Xikun, NIU Feng. Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices[J]. Metrology Science and Technology, 2023, 67(11): 24-32. doi: 10.12338/j.issn.2096-9015.2023.0297
Citation: SANG Jinqiu, HUANG Bing, QIN Zhaoqi, WANG Xueyan, LU Xikun, NIU Feng. Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices[J]. Metrology Science and Technology, 2023, 67(11): 24-32. doi: 10.12338/j.issn.2096-9015.2023.0297

Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices

doi: 10.12338/j.issn.2096-9015.2023.0297
  • Received Date: 2023-11-20
  • Accepted Date: 2023-11-25
  • Rev Recd Date: 2023-12-11
  • Available Online: 2023-12-18
  • Publish Date: 2023-11-18
  • To better satisfy the measurement needs for sound acquisition directionality in smart audio devices and to enhance the flexibility, efficiency, and cost-effectiveness of measurement setups, this study explores the viability of using virtual sound fields. Virtual sound fields are synthesized via vector synthesis. The study compares virtual and physical sound sources in terms of sound field radiation directivity through sound field simulation experiments. Furthermore, an acoustic camera is used to compare the differences in directivity when capturing and localizing virtual versus real sound sources. The simulation data reveal that smaller loudspeaker angles make it easier for virtual sources to replicate the sound field radiation directivity of real physical sources. Lower frequencies increase the 'sweet spot' range, where the virtual sound field closely approximates the directivity of the real physical sound field. Practical measurement experiments demonstrate that lower frequencies in the virtual sound field align closer to the physical sound field's directivity. Specifically, with a speaker angle of 22.5° and frequencies below 2 kHz, the acoustic camera achieves azimuthal accuracy of less than 3° for virtual sound fields; however, at frequencies above 4 kHz, the camera struggles to accurately capture the azimuth of virtual sound fields. The virtual sound field proves effective for measuring directionality in mid to low-frequency ranges, offering a flexible approach to creating complex virtual acoustic environments for assessing smart audio devices.
  • loading
  • [1]
    KUHN J, VOGT P. Analyzing acoustic phenomena with a smartphone microphone[J]. The Physics Teacher, 2013, 51(2): 118-119. doi: 10.1119/1.4775539
    [2]
    ALEX C, JOSE K M, JOSEPH A. Sound localization and Visualization device[C]. proceedings of the 2013 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2013.
    [3]
    INOUE A, IKEDA Y, YATABE K, et al. Visualization system for sound field using see-through head-mounted display[J]. Acoustical Science and Technology, 2019, 40(1): 1-11. doi: 10.1250/ast.40.1
    [4]
    HAWLEY S H, MCCLAIN R E. Visualizing sound directivity via smartphone sensors[J]. The Physics Teacher, 2018, 56(2): 72-74. doi: 10.1119/1.5021430
    [5]
    BERNFELD B. Attempts for better understanding of the directional stereophonic listening mechanism [C]. Proceedings of the Audio Engineering Society Convention 44. Audio Engineering Society, 1973.
    [6]
    GERZON M A. Surround-sound psychoacoustics[J]. Wireless World, 1974, 80(1468): 483-486.
    [7]
    KYRIAKAKIS C, TSAKALIDES P, HOLMAN T. Surrounded by sound[J]. IEEE Signal processing magazine, 1999, 16(1): 55-66. doi: 10.1109/79.743868
    [8]
    SERGI G. Knocking at the door of cinematic artifice: Dolby Atmos, challenges and opportunities[J]. The New Soundtrack, 2013, 3(2): 107-121. doi: 10.3366/sound.2013.0041
    [9]
    HAMASAKI K, NISHIGUCHI T, OKUMURA R, et al. A 22.2 multichannel sound system for ultrahigh-definition TV (UHDTV)[J]. SMPTE Motion Imaging Journal, 2008, 117(3): 40-49. doi: 10.5594/J15119
    [10]
    BOSUN X, XINGFU X. Analyse and sound image Iocalization experiment on multi-channel plannar surround sound system[J]. 声学学报, 1996, 21(S1): 648-660.
    [11]
    谢兴甫. 全景(立体)声的4-3-4变换与N(≥3)通路重发[J]. 华南工学院学报, 1978(2): 54-70.
    [12]
    BAMFORD J S, VANDERKOOY J. Ambisonic sound for us[C]. proceedings of the Audio Engineering Society Convention 99. Audio Engineering Society, 1995.
    [13]
    FRANK M. Phantom sources using multiple loudspeakers in the horizontal plane [M]. na, 2013.
    [14]
    WARD D B, ABHAYAPALA T D. Reproduction of a plane-wave sound field using an array of loudspeakers[J]. IEEE Transactions on speech and audio processing, 2001, 9(6): 697-707. doi: 10.1109/89.943347
    [15]
    FAVROT S, MARSCHALL M, KäSBACH J, et al. Mixed-order Ambisonics recording and playback for improving horizontal directionality [C]. proceedings of the Audio Engineering Society Convention 131. Audio Engineering Society, 1997.
    [16]
    DANIEL J. Acoustic field representation, application to the transmission and the reproduction of complex sound environments in a multimedia context[J]. Ph D Thesis, 2000, 2000: 1.
    [17]
    DANIEL J. Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format[C]. proceedings of the Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction. Audio Engineering Society, 2003.
    [18]
    GERZON M A. Periphony: With-height sound reproduction[J]. Journal of the audio engineering society, 1973, 21(1): 2-10.
    [19]
    AHRENS J, SPORS S. An analytical approach to sound field reproduction using circular and spherical loudspeaker distributions[J]. Acta Acustica united with Acustica, 2008, 94(6): 988-999. doi: 10.3813/AAA.918115
    [20]
    WEI T, SANG J, ZHENG C, et al. Near-field compensated higher-order Ambisonics using a virtual source panning method[C]. proceedings of the Audio Engineering Society Convention 145. Audio Engineering Society, 2018.
    [21]
    魏彤, 吴彦琴, 桑晋秋, 等. 双扬声器近场声源重放实验研究[J]. 应用声学, 2020, 39(2): 11.
    [22]
    BOONE M M, VERHEIJEN E N, VAN TOL P F. Spatial sound-field reproduction by wave-field synthesis[J]. Journal of the Audio Engineering Society, 1995, 43(12): 1003-1012.
    [23]
    BERKHOUT A J, DE VRIES D, VOGEL P. Acoustic control by wave field synthesis[J]. The Journal of the Acoustical Society of America, 1993, 93(5): 2764-2778. doi: 10.1121/1.405852
    [24]
    PULKKI V. Virtual sound source positioning using vector base amplitude panning[J]. Journal of the audio engineering society, 1997, 45(6): 456-466.
    [25]
    MENG R, XIANG J, SANG J, et al. Investigation of an MAA test with virtual sound synthesis[J]. Frontiers in Psychology, 2021, 12: 656052. doi: 10.3389/fpsyg.2021.656052
    [26]
    PULKKI V. Localization of amplitude-panned virtual sources II: Two-and three-dimensional panning[J]. Journal of the Audio Engineering Society, 2001, 49(9): 753-767.
    [27]
    PULKKI V, KARJALAINEN M. Multichannel audio rendering using amplitude panning [dsp applications][J]. IEEE Signal Processing Magazine, 2008, 25(3): 118-122. doi: 10.1109/MSP.2008.918025
    [28]
    PULKKI V. Spatial sound generation and perception by amplitude panning techniques [M]. Helsinki : Helsinki University of Technology, 2001.
    [29]
    PULKKI V, KARJALAINEN M. Localization of amplitude-panned virtual sources I: stereophonic panning[J]. Journal of the Audio Engineering Society, 2001, 49(9): 739-52.
    [30]
    王金山. 基于听音者声场扰动特性的虚拟声像重建方法研究 [D]. 武汉: 武汉大学, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (91) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return