Volume 67 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Xiaoli, HE Chenghao, FENG Xiujuan, ZHANG Hui, NIU Feng, HE Longbiao. Assessment of Axial Sound Field in Air-Coupled Ultrasonic Transducers via Laser Tomography[J]. Metrology Science and Technology, 2023, 67(11): 53-61. doi: 10.12338/j.issn.2096-9015.2023.0302
Citation: ZHANG Xiaoli, HE Chenghao, FENG Xiujuan, ZHANG Hui, NIU Feng, HE Longbiao. Assessment of Axial Sound Field in Air-Coupled Ultrasonic Transducers via Laser Tomography[J]. Metrology Science and Technology, 2023, 67(11): 53-61. doi: 10.12338/j.issn.2096-9015.2023.0302

Assessment of Axial Sound Field in Air-Coupled Ultrasonic Transducers via Laser Tomography

doi: 10.12338/j.issn.2096-9015.2023.0302
  • Received Date: 2023-11-21
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-19
  • Available Online: 2023-12-21
  • Publish Date: 2023-11-18
  • Air-coupled ultrasonic transducers, renowned for their non-contact, non-invasive, and completely non-destructive properties, have a wide range of applications in non-destructive testing, particularly in aerospace composite materials and porous materials. The study of axial sound field reconstruction in these transducers is critical as parameters such as near-field length and directionality significantly impact resolution, anti-interference capability, and positioning accuracy in non-destructive testing applications. Laser tomography, with its advantages of high spatial resolution, broad frequency range, and non-invasive sound field mapping, presents a promising approach for sound field reconstruction. However, its application has been predominantly focused on radial sound field characterization, with limited and incomplete exploration in the axial sound field domain. This research conducts a comprehensive investigation into the axial sound field distribution of air-coupled ultrasonic transducers from theoretical, simulation, and experimental perspectives using laser tomography. The study reveals a high degree of consistency between experimental results and simulations. Additionally, the research contrasts these findings with axial sound field measurements obtained via traditional microphone methods, validating the efficacy of laser tomography for accurate reconstruction of the axial sound field in air-coupled transducers. These results are invaluable for enhancing the measurement accuracy of the axial sound field in air-coupled transducers and contribute significantly to their design and calibration.
  • loading
  • [1]
    Liu X, Wu J W, He Y, et al. Laser ultrasonic testing technology for carbon fiber reinforced resin braided composites based on air-coupled transducer[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2822-2831.
    [2]
    Derusova D A, Vavilov V P, Nekhoroshev V O, et al. Features of Laser-Vibrometric Nondestructive Testing of Polymer Composite Materials Using Air-Coupled Ultrasonic Transducers[J]. RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2022, 57(12): 1060-1071.
    [3]
    Schaal C, Kühl C, Vural J Y, et al. Automated nondestructive testing of composites using air-coupled guided ultrasound[C]. Washington: SPIE, 2023.
    [4]
    Takahashi V, Fortineau J, Lematre, M, et al. Non-Contact Ultrasonic Exploration of Ancient Paintings[C]. New York: IEEE, 2022.
    [5]
    Mortada H, El Mousharrafie S, Mahfoud E, et al. Noncontact nondestructive ultrasonic techniques for manufacturing defects monitoring in composites: a review[J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL,DOI: 10.1177/14759217231184589.
    [6]
    周正干, 孙广开. 先进超声检测技术的研究应用进展[J]. 机械工程学报, 2017, 53(22): 1-10.
    [7]
    Quirce J, Alvarez-Arenas T G, Svilainis L. Calibration of Air-Coupled Ultrasonic Transducers [C]. New York: IEEE, 2021.
    [8]
    国家质量监督检疫总局. 无损检测 超声检测设备的性能与检验 第2部分: 探头: GB/T 27664.2-2011 [S]. 北京: 中国标准出版社, 2011.
    [9]
    国家质量监督检疫总局. 超声探伤仪换能器声场特性校准规范: JJF 1650-2017[S]. 北京: 中国标准出版社, 2017.
    [10]
    WILLIAMS E G, MANN J A I. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography[J]. The Journal of the Acoustical Society of America, 2000, 108(4): 1373.
    [11]
    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F. Sound field reconstruction using acousto-optic tomography[J]. The Journal of the Acoustical Society of America, 2012, 131(5): 3786-3793. doi: 10.1121/1.3695394
    [12]
    吴樵, 周宇轩, 廉国轩, 等. 利用激光多普勒测振仪的空气耦合超声声场测量[J]. 应用声学, 2020, 49(4): 563-569.
    [13]
    王伟印, 陈毅, 王世全, 等. 基于激光反射层析法的换能器声场测量技术及仿真研究[J]. 宇航计测技术, 2019, 39(3): 7-12. doi: 10.12060/j.issn.1000-7202.2019.03.02
    [14]
    Antoni Torras-Rosell, Salvador Barrera-Figueroa. AN ACOUSTO-OPTIC METHOD FOR FREE-FIELD MICROPHONE CALIBRATION[C]. Florence, 2015.
    [15]
    吴君豪, 何双起, 罗明, 等. 空气耦合超声探头声场及其对检测的影响[J]. 宇航材料工艺, 2018(2): 73-77. doi: 10.12044/j.issn.1007-2330.2018.02.015
    [16]
    VALDIVIA N P, WILLIAMS E G. Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography[J]. Journal of the Acoustical Society of America, 2006, 120(6): 3694-705. doi: 10.1121/1.2359284
    [17]
    TORRAS-ROSELL A, JACOBSEN F, BARRERA-FIGUEROA S. An acousto-optic beamformer[J]. The Journal of the Acoustical Society of America, 2012, 132(1): 144-149. doi: 10.1121/1.4726047
    [18]
    贾乐成, 陈世利, 曾周末. 超声声场光学检测的研究进展[J]. 仪器仪表学报, 2019, 40(9): 1-15. doi: 10.19650/j.cnki.cjsi.J1905072
    [19]
    Revel G M, Pandarese G, Cavuto A. Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography[J]. AIP Conference Proceedings, 2012, 1457: 361-369.
    [20]
    潘孙强, 陈哲敏, 张建锋. 声场的直接测量[J]. 光学精密工程, 2015, 23(11): 3077-3082.
    [21]
    王浩宇, 冯秀娟, 祝海江, 等. 基于声光效应和Radon变换的二维声场扫描方法[J]. 声学技术, 2017, 36(5): 733-734.
    [22]
    董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报, 2018, 48(4): 1191-1198.
    [23]
    李骥, 李力, 邓勇刚. 空气耦合超声换能器的频域声场研究[J]. 机械工程学报, 2019, 55(10): 10-16.
    [24]
    李骥, 张旻. 空气耦合超声换能器声场的时域计算方法[J]. 无损检测, 2020, 42(5): 59-62. doi: 10.11973/wsjc202005013
    [25]
    KRAUTKRAMER J, KRAUTKRAMER H. Ultrasonic testing of materials[M]. New York: Springer-Verlag Berlin Heidelberg, 1990.
    [26]
    Torras-Rosell A, Barrera-Figueroa S, Jacobsen F. An investigation of sound fields based on the acoustic-optic effect[C]. Rio de Janeiro, 2011.
    [27]
    王浩宇. 基于平行束与扇形束扫描的声场重建方法研究[D]. 北京: 北京化工大学, 2019.
    [28]
    TORRAS-ROSELL A, BARRERA-FIGUEROA S. An acousto-optic method for free field microphone calibration [C]. Florence, 2015.
    [29]
    王浩宇, 冯秀娟, 祝海江, 等. 二维声场的光学扫描方法[J]. 计量学报, 2018, 39(3): 381-385. doi: 10.3969/j.issn.1000-1158.2018.03.19
    [30]
    殷晓康, 周凯, 王雨婷. 空气耦合超声检测系统开发与测试[J]. 电子测量技术, 2020, 43(15): 79-83. doi: 10.19651/j.cnki.emt.2004465
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (79) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return