Volume 67 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
QIN Zhaoqi, NIU Feng. Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens[J]. Metrology Science and Technology, 2023, 67(12): 47-50, 12. doi: 10.12338/j.issn.2096-9015.2023.0309
Citation: QIN Zhaoqi, NIU Feng. Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens[J]. Metrology Science and Technology, 2023, 67(12): 47-50, 12. doi: 10.12338/j.issn.2096-9015.2023.0309

Investigation into the Factors Affecting Windproof Performance Testing of Microphone Windscreens

doi: 10.12338/j.issn.2096-9015.2023.0309
  • Received Date: 2023-11-24
  • Accepted Date: 2023-12-04
  • Rev Recd Date: 2023-12-13
  • Available Online: 2023-12-16
  • Publish Date: 2023-12-18
  • Microphone windscreens, pivotal in acoustic detection systems, serve to mitigate wind noise interference in outdoor testing, ensuring accurate and reliable data. The windproof efficacy of these windscreens is critical to test outcomes. This study focuses on the methodologies for assessing windscreen windproof performance and the factors influencing these results. The windscreen's windproof capability is quantified using the 1/3 octave frequency difference pre- and post-windscreen application at a constant wind speed. The impacts of measuring point position and background noise on windproof performance are explored. Results reveal that the turbulence increase at the flow field edge leads to test results at the wind tunnel inlet's edge being 2.0 to 32.8 dB higher than those in the central region. Thus, it is advisable to avoid the tunnel inlet's edge for test positioning. Additionally, altering the wind tunnel's background noise with sound sources demonstrated that test outcomes remain unaffected by background noise if the 1/3 octave band sound pressure level is at least 7 dB lower than the measurement band's sound pressure level. Consequently, to determine if background noise meets testing standards, the 1/3 octave band sound pressure level should be used, ensuring it is at least 7 dB lower than the measured band's level.
  • loading
  • [1]
    Van den Berg G P. Wind-induced noise in a screened microphone[J]. The Journal of the Acoustical Society of America, 2006, 119(2): 824, 833.
    [2]
    Ledercq D, Cooper J, Stead M. The use of microphone windshields for outdoor noise measurementslC]. Proceedings of Acoustics 2008. Acoustics, 2008.
    [3]
    Xu Y, Zheng Z C, Wilson D K. A computational study of the effect of windscreen shape and flow resistivity on turbulent wind noise reduction[J]. The Journal of the Acoustical Society of America, 2011, 129(4): 1740-1747. doi: 10.1121/1.3552886
    [4]
    环境保护部. 环境噪声监测技术规范 城市声环境常规监测: HJ 640-2012 [S]. 北京: 中国环境科学出版社, 2012.
    [5]
    国家计划委员会. 工业企业噪声测量规范: GBJ 122-1988 [S]. 北京: 中国计划出版社, 1988.
    [6]
    Zheng Z C, Tan B K. Reynolds number effects on flow acoustic mechanisms in spherical windscreens[J]. Journal of the Acoustical Society of America, 2003, 113(1): 161-166. doi: 10.1121/1.1527927
    [7]
    赖小强. 传声器风噪声抑制方法及实现技术研究[D]. 北京: 中国科学院大学, 2013.
    [8]
    FISOL U, RIPIN Z M, ISMAIL N A, et al. Wind noise analysis of a two-way radio[C]. IEEE International Conference on Smart Instrumentation, 2014.
    [9]
    NEMER E, LEBLANC W. Single-microphone wind noise reduction by adaptive postfiltering [C]. IEEE Workshop on Applications of Signal Processing to Audio & Acoustics, 2009.
    [10]
    郭琴, 邱小军. 传声器风噪声和防风罩降噪性能仿真研究[C]. 北京: 全国声学学术会议, 2016.
    [11]
    侍艳华, 周瑜, 冯晖, 等. 一种用于传声器自噪声抑制的风锥结构设计[J]. 电声技术, 2015, 12(39): 17-19. doi: 10.16311/j.audioe.2015.12.04
    [12]
    尚伟, 陈宝康, 朱小辉, 等. 次级防风罩在风电机组噪声测试中的应用[J]. 噪声与振动控制, 2020, 5(40): 264-272.
    [13]
    沈哲, 杨志刚, 彭里奇, 等. 汽车风洞非均匀声场偏移导致纯音幅值变化[J]. 同济大学学报(自然科学版), 2022, 6(50): 915-920.
    [14]
    万众, 王会康, 滕腾, 等. 声探测系统防风罩降噪特性研究[J]. 电声技术, 2022, 46(8): 44-47.
    [15]
    Etkin B. Acoustic Radiation from a Stationary Cylinder in a Fluid Stream (Aeolian Tones)[J]. The Journal of the Acoustical Society of America, 1957, 29(1): 30. doi: 10.1121/1.1908673
    [16]
    张扬, 沈国辉, 余世策, 等. 输电线风噪声的声学风洞试验[J]. 浙江大学学报(工学版), 2017, 51(8): 1494-1499.
    [17]
    马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2022.
    [18]
    沈国辉, 张扬, 余世策, 等. 光滑圆柱风噪声的风洞试验研究[J]. 振动与冲击, 2018, 37(7): 85-90.
    [19]
    陈荣钱, 伍贻兆, 夏健. 应用随机模型方法预测汽车风噪声[J]. 计算物理. 2013, 1(30): 98-103.
    [20]
    张永强, 熊小平, 韦磊, 等. MEMS麦克风噪声失效分析[J]. 电声技术, 2018, 42(1): 28-32,46.
    [21]
    张珣, 杜婉芬. RLS双麦克风噪声对消技术[J]. 科技风, 2018(28): 68-69.
    [22]
    陈浩, 鲍长春, 夏丙寅. 双麦克风噪声消除的高斯混合模型法[J]. 信号处理, 2014(7): 813-821.
    [23]
    刘先锋, 王学军, 陈晓宇, 等. 汽车道路风噪声测试及改进[J]. 噪声与振动控制, 2014(3): 111-114.
    [24]
    赖颖. 车门尺寸偏差风噪声形成机理及气密性分析[J]. 汽车实用技术, 2018(18): 102-105,111.
    [25]
    赖小强, 李双田. 双传声器系统中的风噪声抑制方法研究[J]. 信号处理, 2013, 29(4): 436-442.
    [26]
    蔺磊, 顾彦, 潘雷, 等. 整车风噪声性能的声学风洞试验分析[J]. 汽车工程学报, 2019, 9(3): 209-213.
    [27]
    宋妙妍, 陈宏清, 陈宝, 等. 某SUV后视镜降噪设计与风洞试验验证[J]. 汽车工程, 2023, 45(4): 681-689,707.
    [28]
    王志亮, 刘波, 桑建兵, 等. 汽车风噪声产生机理研究[J]. 拖拉机与农用运输车, 2008, 35(6): 35-37,40.
    [29]
    田伟. 汽车风噪声的数值仿真与分析[D]. 南京: 南京理工大学, 2006.
    [30]
    乔健, 王建明. 抑制风噪声的频点离散值加权GCC-PHAT时延估计算法[J]. 电子技术应用, 2018, 44(3): 72-76,80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (75) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return