Volume 68 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GAO Yuan, GAO Min, YU Guoliang. A Simplified Narrowband Frequency-Domain Active Noise Control Algorithm without Secondary Path Modeling[J]. Metrology Science and Technology, 2024, 68(3): 29-37. doi: 10.12338/j.issn.2096-9015.2023.0319
Citation: GAO Yuan, GAO Min, YU Guoliang. A Simplified Narrowband Frequency-Domain Active Noise Control Algorithm without Secondary Path Modeling[J]. Metrology Science and Technology, 2024, 68(3): 29-37. doi: 10.12338/j.issn.2096-9015.2023.0319

A Simplified Narrowband Frequency-Domain Active Noise Control Algorithm without Secondary Path Modeling

doi: 10.12338/j.issn.2096-9015.2023.0319
  • Received Date: 2023-11-28
  • Accepted Date: 2023-12-16
  • Rev Recd Date: 2023-12-19
  • Available Online: 2023-12-25
  • Publish Date: 2024-03-01
  • For narrowband active noise control (ANC) systems with high sampling frequencies, a simplified narrowband frequency-domain ANC algorithm is proposed that does not require secondary path information. This algorithm directly calculates the amplitude and phase information of the frequency bins corresponding to the reference signal and error signal in the frequency domain by substituting the reference signal sampling points into the discrete Fourier transform (DFT) definition. These frequency bins are evenly divided into multiple sub-frequency bin groups. For each sub-frequency bin group, the optimal update direction for the adaptive filter coefficients is chosen from the four directions of 0°, 180°, and ±90° to achieve narrowband noise reduction. Compared to the FDFxLMS algorithm, the proposed algorithm avoids the participation of all full-band frequency bins in the calculation, thereby improving computational efficiency. When the number of effective frequency bins meets certain conditions, the computational complexity can be reduced. Simulations using single frequency, multi-frequency, and narrowband noise as primary noise sources demonstrate that the proposed algorithm maintains good noise reduction performance while exhibiting excellent stability and tracking characteristics.
  • loading
  • [1]
    陈克安. 有源噪声控制[M]. 北京: 国防工业出版社, 2014: 4–12.
    [2]
    刘策, 陈剑, 李家柱. 基于声阵列技术的车辆通过噪声室内测量方法[J]. 计量学报, 2019, 40(6): 1096-1100. doi: 10.3969/j.issn.1000-1158.2019.06.25
    [3]
    秦朝琪, 黄杰, 白滢, 等. 机动车行进中鸣笛声监测的校准方法研究[J]. 计量科学与技术, 2021, 65(8): 42-45. doi: 10.12338/j.issn.2096-9015.2020.9033
    [4]
    毛宏宇, 杨平, 何龙标, 等. 国内外飞机噪声标准研究进展及对比分析[J]. 计量科学与技术, 2022, 66(1): 9-13.
    [5]
    代元军, 姜金榜, 吴柯, 等. 水平轴风力机叶片气动噪声源分布特性的试验研究[J]. 中国测试, 2023, 49(1): 31-35.
    [6]
    C H Hansen, S D Snyder. Active Control of Sound and Vibration[M]. London: E&FN Spon, 1997.
    [7]
    S M Kuo, D R Morgan. Active Noise Control Systems: Algorithm and DSP Implementations[M]. New York: Wiley, 1996.
    [8]
    S J Elliott. Signal Processing for Active Control[M]. London: Academic, 2001.
    [9]
    褚轶景, 赵越喆, 牛锋, 等. 基于状态方程的Fx-RLS主动噪声控制方法[J]. 计量学报, 2023, 44(11): 1713-1718. doi: 10.3969/j.issn.1000-1158.2023.11.12
    [10]
    Zhang J , Elliott S J , Cheer J . Robust performance of virtual sensing methods for active noise control[J]. Mechanical Systems and Signal Processing, 2021, 152(9): 107453.
    [11]
    Shen Q , Spanias A S . Time and frequency domain X-block LMS algorithms for active noise control[J]. Noise Control Engineering Journal, 1996, 1: 353-360.
    [12]
    熊德智, 肖宇, 胡军华, 等. 矩形窗三点插值傅里叶变换高精度频率估计方法[J]. 中国测试, 2023, 49(9): 57-62. doi: 10.11857/j.issn.1674-5124.2021120030
    [13]
    Elliott S J , Rafaely B . Frequency-domain adaptation of causal digital filters[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1354-1364.
    [14]
    马进, 邹海山, 邱小军. 存在声反馈的前馈有源噪声控制系统性能分析[J]. 声学学报, 2016, 41(5): 686-693. doi: 10.15949/j.cnki.0371-0025.2016.05.018
    [15]
    Hu M , Xue J , Lu J . Online multi-channel secondary path modeling in active noise control without auxiliary noise[J]. The Journal of the Acoustical Society of America, 2019, 146(4): 2590–2595.
    [16]
    Chen W , Lu C , Liu Z , et al. A computationally efficient active sound quality control algorithm using local secondary-path estimation for vehicle interior noise[J]. Mechanical Systems and Signal Processing, 2022, 168: 108698.
    [17]
    Yang T , Zhu L , Li X , et al. An online secondary path modeling method with regularized step size and self-tuning power scheduling[J]. Journal of the Acoustical Society of America, 2018, 143(2): 1076-1084.
    [18]
    Chu YJ, Chan SC, Mak CM, et al. A Diffusion FxLMS algorithm for multi-channel active noise control and variable spatial smoothing[C]. Toronto : IEEE International Conference on Acoustics, 2021.
    [19]
    Gong C , Wu M , Guo J , et al. Multichannel narrowband active noise control system with a frequency estimator based on DFT coefficients[J]. Journal of Sound and Vibration, 2022, 521: 116660.
    [20]
    Gong C , Wu M , Guo J , et al. Modified narrowband active noise control system with frequency mismatch tolerance[J]. Applied Acoustics, 2022, 189: 108598.
    [21]
    Zhou D , Debrunner V . A New Active Noise Control Algorithm That Requires No Secondary Path Identification Based on the SPR Property[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1719-1729.
    [22]
    Wu M , Chen G , Qiu X . An Improved Active Noise Control Algorithm Without Secondary Path Identification Based on the Frequency-Domain Subband Architecture[J]. IEEE Press, 2008, 16(8): 1409-1419.
    [23]
    D R Morgan, J C Thi. A delayless subband adaptive filter architecture[J]. IEEE Trans. Signal Processing, 1995, 43(8): 1819-1830. doi: 10.1109/78.403341
    [24]
    J Huo, S Nordholm, Z Zang. New weight transform schemes for delayless adaptive filtering[C]. Proceedings of IEEE Global Telecommunications Conference, 2001.
    [25]
    Milani A A , Panahi I M S , Briggs R . Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems. [C]. International Conference of the IEEE Engineering in Medicine & Biology Society, 2007.
    [26]
    Larson L O , Haan J M D , Claesson I . A new subband weight transform for delayless subband adaptive filtering structures[C]. International Conference on Digital Signal Processing, 2002.
    [27]
    Min Gao, Jing Lu, Xiaojun Qiu. A Simplified Subband ANC Algorithm Without Secondary Path modeling[J]. IEEE/ACM transactions on audio, speech, and language processing, 2016, 24(7): 1164-1174. doi: 10.1109/TASLP.2016.2516439
    [28]
    K Chen, J Xue, J Lu, et al. Improving active noise control without secondary path modeling using subband phase estimation[J]. J. Acoust. Soc. Am, 2020, 147(2): 1275-1283. doi: 10.1121/10.0000743
    [29]
    Chen K , Niu F , Zou H , et al. Modification of frequency-domain active noise control algorithm without secondary path modeling[J]. The Journal of the Acoustical Society of America, 2021, 149(2): 1021-1029.
    [30]
    Simon O Haykin. Adaptive Filter Theory [M]. Fifth Edition . London: Prentice Hall, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (161) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return