Volume 68 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
CHENG Wei, YANG Tianbo, LI Changwu, HOU Likai, BAO Fubing, NI Jinchun. Advancements in the Natural Gas Measurement System Under a Multi-Source Scenario: A Domestic and International Perspective[J]. Metrology Science and Technology, 2024, 68(1): 3-9, 75. doi: 10.12338/j.issn.2096-9015.2023.0321
Citation: CHENG Wei, YANG Tianbo, LI Changwu, HOU Likai, BAO Fubing, NI Jinchun. Advancements in the Natural Gas Measurement System Under a Multi-Source Scenario: A Domestic and International Perspective[J]. Metrology Science and Technology, 2024, 68(1): 3-9, 75. doi: 10.12338/j.issn.2096-9015.2023.0321

Advancements in the Natural Gas Measurement System Under a Multi-Source Scenario: A Domestic and International Perspective

doi: 10.12338/j.issn.2096-9015.2023.0321
  • Received Date: 2023-11-29
  • Accepted Date: 2023-12-04
  • Rev Recd Date: 2023-12-06
  • Available Online: 2023-12-13
  • Publish Date: 2024-01-18
  • With increasing attention on environmental concerns, natural gas, as a clean energy source, is gaining a larger share in China's fossil energy consumption system. Recently, the consumption of natural gas has been characterized by a diversity of sources and a rise in imported gas, leading to a multi-source gas network pattern. Significant differences in calorific value among various gas sources pose challenges for China's existing measurement system in performing accurate trade measurement and carbon emission accounting. This calls for the development of a new measurement system. This article investigates the current status of domestic and international natural gas measurement systems, introducing three measurement methods: volumetric, mass, and energy measurement, along with their principles. A comparative analysis of current natural gas measurement technologies, including technical standards, measurement instruments, and traceability, is conducted. It highlights that the energy measurement method, based on natural gas calorific value combined with its volumetric or mass flow, offers a fairer and more accurate approach in the context of diverse gas sources. Additionally, the paper identifies shortcomings in China's natural gas quality analysis equipment, the construction of traceability for gas analysis, and pipeline network verification technologies.
  • loading
  • [1]
    王蓓, 高芸, 胡迤丹, 等. 2021年中国天然气发展述评及2022年展望[J]. 天然气技术与经济, 2022, 16(1):1-9, 16.
    [2]
    王富平, 周娟, 段小浪, 等. 我国如何实行天然气能量计量和计价[J]. 天然气工业, 2018, 38(10): 128-134.
    [3]
    吴谋远, 殷冬青, 何春蕾, 等. 我国需加快推行天然气热值计量计价改革[J]. 国际石油经济, 2018, 26(4): 38-41. doi: 10.3969/j.issn.1004-7298.2018.04.006
    [4]
    戴连超. 智能天然气能量计量仪表的研究与设计[D]. 杭州: 中国计量学院, 2015.
    [5]
    贺超. 天然气热值计量发展趋势及展望[J]. 天然气与石油, 2021, 39(1): 140-144.
    [6]
    常季成. 国内外天然气计量技术现状及发展趋势[J]. 仪器仪表标准化与计量, 2019(2): 36-38.
    [7]
    罗勤. 天然气能量计量在我国应用的可行性与实践[J]. 天然气工业, 2014, 34(2): 123-129.
    [8]
    党磊. 西北地区天然气贸易计量技术研究[D]. 西安: 西安石油大学, 2017.
    [9]
    张南翔. 科里奥利力质量流量计原理及在天然气计量方面的应用[J]. 石油仪器, 2002, 16(3): 18-20.
    [10]
    肖刚, 刘延昌, 马宁, 等. 科里奥利质量流量计在乙烷气体贸易交接中的应用研究[J]. 油气田地面工程, 2020, 39(11): 73-77.
    [11]
    卫杰, 李宁. 天然气的计量方法与发展[J]. 煤炭与化工, 2020, 43(4): 143-147,150.
    [12]
    吴军. 天然气热量计燃烧实验研究[D]. 杭州: 中国计量大学, 2018.
    [13]
    陈赓良. 对间接法测定天然气发热量的认识[J]. 天然气与石油, 2021, 39(2): 41-47. doi: 10.3969/j.issn.1006-5539.2021.02.008
    [14]
    贾玲玲, 吴运逸. 我国天然气能量计量计价单位及基准值研究[J]. 计量科学与技术, 2023, 67(1): 45-49.
    [15]
    KILMER J. Custody transfer of natural gas by heat content[J]. Oil Gas J, 1982, 80(37): 1.
    [16]
    贾晓林, 黄杨挺, 吴凯骐, 等. 天然气能量计量设计关键技术研究[J]. 天然气与石油, 2021, 39(2): 11-17. doi: 10.3969/j.issn.1006-5539.2021.02.003
    [17]
    崔媛媛, 何秀文, 何小斌, 等. 中国天然气两部制管输价格研究[J]. 国际石油经济, 2018, 26(11): 30-42.
    [18]
    罗勤, 段继芹, 涂振权, 等. 天然气能量计量标准体系优化研究[R]. 成都: 中国石油天然气股份有限公司西南油气田分公司天然气研究院, 2021.
    [19]
    段继芹, 罗勤, 涂振权, 等. 中国天然气能量计量标准体系优化[J]. 天然气工业, 2022, 42(S1): 157-165.
    [20]
    苏毅, 骆科东. 我国天然气流量计量技术现状及发展趋势分析[J]. 石油管材与仪器, 2015, 1(5): 8-12,17.
    [21]
    RIEZEBOS H. The art of gas measurement about performance monitoring by on-line comparison[J]. Groningen:Gasunie Engineering Technology, 2008, 14: 1.
    [22]
    MICKAN I R. Requirements for gas metering systems in transport networks of germany to achieve best balances[R]. Chengdu: Natural Gas Research Institute of PetroChina Southwest Oil & Gasfield Company, 2018.
    [23]
    常宏岗, 段继芹. 中国天然气计量技术及展望[J]. 天然气工业, 2020, 40(1): 110-118.
    [24]
    黄维和, 段继芹, 常宏岗, 等. 中国天然气能量计量体系建设探讨[J]. 天然气工业, 2021, 41(8): 186-193.
    [25]
    FOLKESTAD T, FLOLO D, TUNHEIM H, et al. Operating experience with two ultrasonic gas meters in series[R]. Oslo: NorthSea Flow Measurement Workshop, 2003.
    [26]
    陈群尧, 赵矛. 国内外天然气流量计检定流程及水平比较[J]. 石油工业技术监督, 2018, 34(11): 37-42. doi: 10.3969/j.issn.1004-1346.2018.11.012
    [27]
    陈赓良. 0级热量计的技术进展[J]. 石油与天然气化工, 2023, 52(2): 128-132. doi: 10.3969/j.issn.1007-3426.2023.02.021
    [28]
    周理, 陈赓良, 潘春锋, 等. 天然气发热量测定的溯源性[J]. 天然气工业, 2014, 34(11): 122-127.
    [29]
    Rossini F D. The heats of combustion of methane and carbon monoxide[J]. Journal of Research National Bureau of Standards, 1931, 6: 37-49. doi: 10.6028/jres.006.002
    [30]
    Schley P, Beck M, Uhrig M, et al. Measurements of the calorific value of methane with the new GERG reference calorimeter[J]. International Journal of Thermophysics, 2010, 31: 665-679. doi: 10.1007/s10765-010-0714-z
    [31]
    Lee J, Kwon S, Joung W, et al. Measurement of the Calorific value of methane by calorimetry using metal burner[J]. International Journal of Thermophysics, 2017, 38: 1-16. doi: 10.1007/s10765-016-2132-3
    [32]
    郑宏伟, 刘喆, 吴岩. 天然气计量检定智能化技术探索与展望[J]. 油气储运, 2021, 40(3): 287-292,318. doi: 10.6047/j.issn.1000-8241.2021.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views (430) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return