Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
MEN Yutong, ZHANG Xinda, AN Baolin, HUAN Kewei, DONG Wei. Calibration of the Field of View Directional Response Function of Infrared Spectroradiometers[J]. Metrology Science and Technology, 2024, 68(5): 51-56, 64. doi: 10.12338/j.issn.2096-9015.2023.0330
Citation: MEN Yutong, ZHANG Xinda, AN Baolin, HUAN Kewei, DONG Wei. Calibration of the Field of View Directional Response Function of Infrared Spectroradiometers[J]. Metrology Science and Technology, 2024, 68(5): 51-56, 64. doi: 10.12338/j.issn.2096-9015.2023.0330

Calibration of the Field of View Directional Response Function of Infrared Spectroradiometers

doi: 10.12338/j.issn.2096-9015.2023.0330
  • Received Date: 2023-12-05
  • Accepted Date: 2024-01-02
  • Rev Recd Date: 2024-05-15
  • Available Online: 2024-06-06
  • Publish Date: 2024-05-18
  • In the field of infrared radiation characteristics measurement, Fourier transform infrared (FTIR) spectroradiometers are commonly used measurement units. The field of view (FOV) directional response function is one of the main sources of uncertainty, which manifests as varying responsivity at different locations when the measurement target deviates from the center of the FOV. Currently, most studies on FOV directional response employ medium-temperature, conventional-sized blackbodies as radiation sources, resulting in limited spatial resolution. In this study, a high-temperature, small-sized blackbody radiation source is used to investigate the FOV uniformity of FTIR spectroradiometers, and the directional response function under a typical FOV of 75 mrad is obtained. The variation of spectral responsivity in the uniform region of the FOV is analyzed, and a correction function for the FOV directional response characteristics is proposed and experimentally verified. The results show that after applying the proposed correction function, the responsivity uniformity in the uniform FOV region increases from 92% to 98%.
  • loading
  • [1]
    Che K, Liu Y, Cai Z, et al. Review of atmospheric greenhouse gas observation and application based on portable fourier transform infrared spectrometer[J]. Remote Sensing Technology and Application, 2021, 36(1): 44-54.
    [2]
    冯明春, 徐亮, 高闽光, 等. 傅里叶变换红外光谱辐射定标方法的研究[J]. 红外技术, 2012, 34(6): 366-370. doi: 10.3969/j.issn.1001-8891.2012.06.012
    [3]
    Anderson K. Temporal variability in calibration target reflectance: Methods, models and applications[D]. Southampton : University of Southampton, 2005.
    [4]
    姚凯凯, 王浩, 许帆, 等. 光谱仪在发动机红外隐身测评中的应用研究[J]. 激光与红外, 2020, 50(8): 975-980. doi: 10.3969/j.issn.1001-5078.2020.08.013
    [5]
    Rammeloo C, Baumgartner A. Spectroradiometer calibration for radiance transfer measurements[J]. Sensors, 2023, 23(4): 2339. doi: 10.3390/s23042339
    [6]
    Mac Arthur A, MacLellan C J, Malthus T. The fields of view and directional response functions of two field spectroradiometers[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(10): 3892-3907. doi: 10.1109/TGRS.2012.2185055
    [7]
    MacArthur A A, MacLellan C, Malthus T J. The implications of non-uniformity in fields-of-view of commonly used field spectroradiometers[C]. IEEE International Geoscience and Remote Sensing Symposium, 2007.
    [8]
    王学新, 杨鸿儒, 俞兵, 等. 红外目标等立体角标定和测量方法研究[J]. 应用光学, 2018, 39(4): 518-521.
    [9]
    Jiao Z, Li Y, Chen G, et al. Correction of Spatial Nonuniformity in Spectroradiometer Field-of-View Using a Concentric-Circles Method[C]. Photonics, 2022.
    [10]
    刘志明, 高闽光, 刘文清, 等. 傅里叶变换红外光谱(FTIR)非线性多点定标方法研究[J]. 光谱学与光谱分析, 2008(9): 2077-2080. doi: 10.3964/j.issn.1000-0593(0008)09-2077-04
    [11]
    关威, 刘建梅, 王琦, 等. 基于红外辐射计的物体光谱发射率测量方法[J]. 火力与指挥控制, 2016, 41(11): 163-166,170.
    [12]
    王怡, 王浩, 卫子毓, 等. 基于光谱辐射计的航空发动机红外辐射特性测试方法[J]. 红外技术, 2023, 45(3): 292-297,321.
    [13]
    谢臣瑜, 刘延, 谢琳琳, 等. 多通道自校准热红外辐射计的研制和外场应用[J]. 计量科学与技术, 2022, 66(4): 80-88.
    [14]
    黄伟, 吉洪湖, 斯仁. FTIR光谱辐射计测量结果的非均匀性修正[J]. 激光与红外, 2015, 45(4): 400-405. doi: 10.3969/j.issn.1001-5078.2015.04.012
    [15]
    张允祥, 李新, 李琛, 等. 自校准多通道红外辐射计的设计与性能测试[J]. 应用光学, 2020, 41(4): 743-753.
    [16]
    Yang Minzhu, Zou Yaopu, Zhang Lei, et al. Nonlinear effects of the Fourier transform spectrometer detector and its correction[J]. Infrared and Laser Engineering, 2017, 46(10): 1023001. doi: 10.3788/IRLA201746.1023001
    [17]
    宋旭尧, 端木庆铎, 董伟, 等. 基于光通量倍增法的傅里叶红外探测系统光谱响应度非线性测量[J]. 红外与毫米波学报, 2020, 39(4): 409-416. doi: 10.11972/j.issn.1001-9014.2020.04.003
    [18]
    宋旭尧, 端木庆铎, 董伟, 等. 基于高温黑体的傅里叶光谱测量系统响应度分段线性标定[J]. 红外与激光工程, 2019, 48(7): 164-169.
    [19]
    万上宾. 红外辐射计绝对定标技术研究[D]. 西安:西安工业大学, 2022.
    [20]
    张允祥, 李新, 黄冬, 等. 红外通道式野外辐射计的光机设计及性能测试[J]. 红外与激光工程, 2022, 51(12): 70-80.
    [21]
    何映锋, 邓乐武, 吴杰, 等. 基于分段线性法的红外辐射计响应度标定研究[J]. 计量学报, 2020, 41(6): 646-649. doi: 10.3969/j.issn.1000-1158.2020.06.03
    [22]
    吴志峰, 代彩红, 赵伟强, 等. 基于可调谐激光的光谱辐射照度响应度定标[J]. 光谱学与光谱分析, 2021, 41(3): 853-857.
    [23]
    郭曦. 旋转采样综合孔径辐射计极坐标采样理论与定标方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2021.
    [24]
    Yoon H W , Khromchenko V , Eppeldauer G P . Improvements in the design of thermal-infrared radiation thermometers and sensors[J]. Optics Express, 2019, 27(10): 14246.
    [25]
    石晓光, 宦克为, 高兰兰. 红外物理[M]. 杭州: 浙江大学出版社, 2013: 53-57.
    [26]
    丁文皓, 张霞, 方奇. 红外辐射特性校准技术研究进展[J]. 宇航计测技术, 2021, 41(1): 9-14. doi: 10.12060/j.issn.1000-7202.2021.01.02
    [27]
    李剑, 王德发, 夏春, 等. 傅里叶变换红外光谱法同步测量气体污染物的研究[J]. 计量技术, 2018(4): 6-9.
    [28]
    Luo M D, Ji H H, Huang W, et al. Research on measurement method of mid—IR spectral radiant intensity of exhaust system with FTIR spectrometer[J]. Aerosp. Power, 2007, 22: 1423-1429.
    [29]
    Wang L, Cheng Y, Lamb D, et al. The application of rapid handheld FTIR petroleum hydrocarbon-contaminant measurement with transport models for site assessment[J]. Geoderma, 2019, 361: 114017.
    [30]
    Pang X T. Research on the Measuring Technology of Infrared Radiation Character of Aircraft Skin[D]. Shenyang : Shenyang Aerospace University, 2016.
    [31]
    朱军, 刘文清, 陆亦怀, 等. 基于FTIR光谱辐射测量分析大气透过率[J]. 光学技术, 2005(4): 627-629. doi: 10.3321/j.issn:1002-1582.2005.04.050
    [32]
    任雍, 于永杰, 余安安, 等. 微波辐射计两点定标误差分析[J]. 电子测量技术, 2020, 43(24): 48-51.
    [33]
    杨杰波. 地基微波辐射计定标及大气参数反演改进研究[D]. 武汉: 华中科技大学, 2021.
    [34]
    NASA. MR300 Series SpectroradiometersAlignment and Performance Verification Guide: IMZ9125[R]. Canada: Asea Brown Boveri, 2004.
    [35]
    Efremova N Y. Development of the Concept of Uncertainty in Measurement and Revision of Guide to the Expression of Uncertainty in Measurement[M]. Belarus: GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE, 2017: 9-14.
    [36]
    Zhao C S. The Theory and Practice Design of The Indetermination Degree of Measure[D]. Changchun: Changchun University of Science and Technology, 2007.
    [37]
    Zou M S. The Sources and Analysis of Common Probability Distribution Coverage Factor k Value in Evaluation and Expression for the Uncertainty of Measurement[J]. Metrol. Meas. Tech, 2014, 41: 84-86.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (83) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return