Volume 67 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Zhengdong, LI Ke, DING Chaomin, XIAO Zhe, LIU Fan, GUO Xiaoyan, LI Qi. Rapid Identification of Alcohol-Based Gasoline Types Using Modelling of Effective Chemical Information from Near-Infrared Spectroscopy[J]. Metrology Science and Technology, 2023, 67(12): 3-12. doi: 10.12338/j.issn.2096-9015.2023.0331
Citation: ZHANG Zhengdong, LI Ke, DING Chaomin, XIAO Zhe, LIU Fan, GUO Xiaoyan, LI Qi. Rapid Identification of Alcohol-Based Gasoline Types Using Modelling of Effective Chemical Information from Near-Infrared Spectroscopy[J]. Metrology Science and Technology, 2023, 67(12): 3-12. doi: 10.12338/j.issn.2096-9015.2023.0331

Rapid Identification of Alcohol-Based Gasoline Types Using Modelling of Effective Chemical Information from Near-Infrared Spectroscopy

doi: 10.12338/j.issn.2096-9015.2023.0331
  • Received Date: 2023-12-05
  • Accepted Date: 2023-12-05
  • Rev Recd Date: 2023-12-07
  • Available Online: 2023-12-15
  • Publish Date: 2023-12-18
  • Methanol gasoline and ethanol gasoline, as two distinct types of clean energy sources, possess unique properties and characteristics. Accurate identification of these alcohol-based gasoline types is crucial for ensuring fuel quality and vehicle safety. Near-Infrared Spectroscopy (NIR) is a pivotal method for identifying alcohol-based gasoline types, and modelling based on NIR's effective characteristic wavelengths can overcome the effects of interfering and noisy spectral segments on model accuracy. This study employed the characteristic spectral bands of methanol and ethanol molecules in NIR spectra to develop a Partial Least Squares Discriminant Analysis (PLS-DA) model for distinguishing between methanol and ethanol gasoline. The success rates of full-wavelength spectral, Variable Importance in Projection (VIP) spectral, and feature spectral band models were compared under identical modelling conditions. Results indicated that the full-wavelength and VIP spectral models showed lower accuracy in identifying low-content alcohol-based gasoline samples, with success rates of 90% and 96.7% respectively. In contrast, the optimal feature spectral band model, constructed using the complete differential spectral information of methanol and ethanol molecules (4500~5200+5600~7200+7900~8800 cm−1), achieved a 100% success rate in identifying alcohol-based gasoline samples with volume fractions of 0.5% to 80%. The study demonstrates that selecting feature spectral bands based on chemical structure is an effective wavelength selection method, enhancing model accuracy significantly. In summary, this research successfully establishes a highly accurate model for the qualitative identification of alcohol-based gasoline types using selected NIR spectral bands based on chemical information, showing potential for application in other fuel type identifications.
  • loading
  • [1]
    许勤华, 张艳伟. 绿色能源的技术突破和未来能源产业前瞻[J]. 人民论坛, 2023(16): 45-49.
    [2]
    YESILYURT M K, EROL D, YAMAN H, et al. Effects of using ethyl acetate as a surprising additive in SI engine pertaining to an environmental perspective[J]. International Journal of Environmental Science and Technology, 2022, 19(10): 9427-9456. doi: 10.1007/s13762-021-03706-3
    [3]
    LI S H, WEN Z, HOU J, et al. Effects of Ethanol and Methanol on the Combustion Characteristics of Gasoline with the Revised Variation Disturbance Method[J]. ACS Omega, 2022, 7(21): 17797-17810. doi: 10.1021/acsomega.2c00991
    [4]
    HO C S, PENG J F, YUN U, et al. Impacts of methanol fuel on vehicular emissions: A review[J]. Frontiers of Environmental Science & Engineering, 2022, 16(9): 121.
    [5]
    TIAN Z, ZHEN X, WANG Y, et al. Comparative study on combustion and emission characteristics of methanol, ethanol and butanol fuel in TISI engine[J]. Fuel, 2020, 259: 116199. doi: 10.1016/j.fuel.2019.116199
    [6]
    LEE D M, LEE D H, HWANG I H. Gasoline quality assessment using fast gas chromatography and partial least-squares regression for the detection of adulterated gasoline[J]. Energy & Fuels, 2018, 32(10): 10556-10562.
    [7]
    AVILA L M, DOS SANTOS A P F, DE MATTOS D I M, et al. Determination of ethanol in gasoline by high-performance liquid chromatography[J]. Fuel, 2018, 212: 236-239. doi: 10.1016/j.fuel.2017.10.039
    [8]
    YANG Y J, WEI Y J, WANG W R, et al. The Effects of Methanol Fraction on the Azeotropic Behaviors of Methanol/Gasoline Mixtures[J]. International Journal of Green Energy, 2015, 12(11): 1076-1085. doi: 10.1080/15435075.2014.890102
    [9]
    WU Y S, LIU Y S, LI X L, et al. Gasoline octane number prediction from near-infrared spectroscopy with an ANN-based model[J]. Fuel, 2022, 318: 123543. doi: 10.1016/j.fuel.2022.123543
    [10]
    CáMARA A B F, DE CARVALHO L S, DE MORAIS C L M, et al. MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends[J]. Fuel, 2017, 210: 497-506. doi: 10.1016/j.fuel.2017.08.072
    [11]
    LIU Z, LUO N N, SHI J L, et al. Raman spectroscopy for the discrimination and quantification of fuel blends[J]. Journal of Raman Spectroscopy, 2019, 50(7): 1008-1014. doi: 10.1002/jrs.5602
    [12]
    李轲, 杜彪, 肖哲,. 基于近红外光谱技术的油品快检方法研究进展 [J]. 计量科学与技术, 2022, 66(12): 3-10, 26.
    [13]
    GORLA G, FERRER A, GIUSSANI B. Process understanding and monitoring: A glimpse into data strategies for miniaturized NIR spectrometers[J]. Analytica Chimica Acta, 2023, 1281: 341902. doi: 10.1016/j.aca.2023.341902
    [14]
    胡军, 刘燕德, 郝勇,. 甲醇汽油、乙醇汽油定性判别及其醇含量测定模型研究 [J]. 光谱学与光谱分析, 2020, 40(5): 1640-1644.
    [15]
    丁怡曼, 薛晓康, 范宾,. 基于便携式拉曼光谱的汽油快速识别模型 [J]. 石油炼制与化工, 2021, 52(11): 64-69.
    [16]
    JOHNSTONE I M, TITTERINGTON D M. Statistical challenges of high-dimensional data [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1906): 4237-4253.
    [17]
    LI K, ZHANG C, DU B, et al. Selection of the effective characteristic spectra based on the chemical structure and its application in rapid analysis of ethanol content in gasoline[J]. ACS Omega, 2022, 7(23): 20291-20297. doi: 10.1021/acsomega.2c02282
    [18]
    YUN Y H, LI H D, DENG B C, et al. An overview of variable selection methods in multivariate analysis of near-infrared spectra[J]. Trac-Trend Anal Chem, 2019, 113: 102-115. doi: 10.1016/j.trac.2019.01.018
    [19]
    ZOU X B, ZHAO J W, Malcolm J W P, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667(1-2): 14-32. doi: 10.1016/j.aca.2010.03.048
    [20]
    李轲, 鲁冰, 杜彪, 等. 汽油中乙醇光谱特征谱段的有效选取及应用 [J]. 计量科学与技术, 2022, 66(5): 19-24.
    [21]
    国家市场监督管理总局, 国家标准化管理委员会. 车用甲醇汽油(M85): GB 23799—2021 [S]. 北京: 中国标准出版社, 2021.
    [22]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 车用乙醇汽油E85: GB 35793—2018 [S]. 北京: 中国标准出版社, 2018.
    [23]
    李琪, 杜彪, 张正东,. 傅里叶变换近红外光谱仪在汽、柴油分析中的应用 [J]. 计量科学与技术, 2022, 66(10): 20-27.
    [24]
    GERRETZEN J, SZYMAŃSKA E, BART J, et al. Boosting model performance and interpretation by entangling preprocessing selection and variable selection[J]. Analytica Chimica Acta, 2016, 938: 44-52. doi: 10.1016/j.aca.2016.08.022
    [25]
    阎续, 沈丽娟, 胥文彦, 等. 拉曼光谱用于CHO细胞培养液多指标快速分析 [J]. 高校化学工程学报, 2019, 33(4): 872-877.
    [26]
    龚瑞昆, 赵学智, 赵福生. 基于EfficientNetV2-HDCA模型水下鱼类图像分类算法研究[J]. 电子测量技术, 2022, 45(22): 128-134. doi: 10.19651/j.cnki.emt.2209829
    [27]
    刘楠, 刘翠玲, 徐金阳, 等. 基于极限学习机自编码算法的近红外光谱模型传递的研究 [J]. 食品安全质量检测学报, 2023, 14(5): 30-36.
    [28]
    LIU H, XU J P, QU L B, et al. Generalized two-dimensional correlation near-infrared spectroscopy and principal component analysis of the structures of methanol and ethanol[J]. Science China Chemistry, 2010, 53(5): 1155-1160. doi: 10.1007/s11426-010-0172-2
    [29]
    ADACHI D, KATSUMOTO Y, SATO H, et al. Near-infrared spectroscopic study of interaction between methyl group and water in water-methanol mixtures[J]. Applied Spectroscopy, 2002, 56(3): 357-361. doi: 10.1366/0003702021954728
    [30]
    DEVOS O, DOWNEY G, DUPONCHEL L. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils[J]. Food chemistry, 2014, 148: 124-130. doi: 10.1016/j.foodchem.2013.10.020
    [31]
    LOTTERING R T, GOVENDER M, PEERBHAY K, et al. Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solanum mauritianum in commercial forest plantations using image texture[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 271-280. doi: 10.1016/j.isprsjprs.2019.11.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (134) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return