Volume 68 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIU Wei, WANG Ting, ZOU Yaxiong, ZHANG Wenge, LIU Wenru, LIU Weiguang, GUO Liang. Investigation of Filtration Membrane Collection Efficiency Testing Methods for Ambient Air Sampling[J]. Metrology Science and Technology, 2024, 68(1): 31-36, 52. doi: 10.12338/j.issn.2096-9015.2023.0338
Citation: LIU Wei, WANG Ting, ZOU Yaxiong, ZHANG Wenge, LIU Wenru, LIU Weiguang, GUO Liang. Investigation of Filtration Membrane Collection Efficiency Testing Methods for Ambient Air Sampling[J]. Metrology Science and Technology, 2024, 68(1): 31-36, 52. doi: 10.12338/j.issn.2096-9015.2023.0338

Investigation of Filtration Membrane Collection Efficiency Testing Methods for Ambient Air Sampling

doi: 10.12338/j.issn.2096-9015.2023.0338
  • Received Date: 2023-12-07
  • Accepted Date: 2023-12-08
  • Rev Recd Date: 2023-12-12
  • Available Online: 2023-12-16
  • Publish Date: 2024-01-18
  • This study aims to satisfy the testing needs for the collection efficiency of filtration membranes used in ambient air sampling and to ensure the consistency and accuracy of these tests. It analyzes the key influencing factors and the feasibility of the filtration membrane collection efficiency testing methods. Subsequently, two testing schemes based on particle number concentration and particle mass concentration are developed to assess the collection efficiency of ambient air filtration membranes. This paper presents the principles, experimental device requirements, and procedures of these testing schemes. Tests were conducted on various materials and applications of ambient particulate matter sampling filters. The experimental results show a high degree of consistency between the two methods in terms of collection efficiency test conformity. However, the method based on number concentration yields slightly lower results compared to the mass concentration-based method. The differences are attributed to the inherent limitations of the testing methods and deviations caused by various detection devices, though these impacts are negligible overall. Both methods demonstrate high reliability and equivalence, laying a foundation for their use in practical applications. Depending on the configuration of their experimental devices, users can choose either method for testing the collection efficiency of filtration membranes, ensuring the test's accuracy and reliability.
  • loading
  • [1]
    刘畅. PM2.5采样滤膜性能评价技术方法研究[D]. 天津: 天津理工大学, 2023.
    [2]
    Measurement Technology Laboratories. Measurement Technology Laboratories PM2.5 Teflon Filters Quality Assurance Project Plan Category IV: EP-D-10-009[R]. Durham: U. S. Environmental Protection Agency, 2010.
    [3]
    Jhy-Charm Soo, Keenan Monaghan, Taekhee Lee, et al. Air sampling filtration media: Collection efficiency for respirable size-selective sampling[J]. Aerosol Science and Technolofy, 2016(50): 76-87.
    [4]
    刘俊杰, 张文阁. 可吸入颗粒物采样器准确性计量检测方法的设计及研究[J]. 中国粉体技术, 2006, 12(5): 5-8.
    [5]
    张文阁, 刘巍, 刘俊杰, 等. 环境空气颗粒物质量浓度计量溯源体系的建立[J]. 计量科学与技术, 2022, 66(10): 10-15.
    [6]
    张文阁, 刘巍, 陈仲辉, 等. PM2.5重量法标准装置研制及溯源性研究[J]. 计量技术, 2015(1): 3-7.
    [7]
    刘巍, 张文阁, 夏春, 等. 基于重量法测定PM2.5浓度的测量不确定度分析[J]. 工业计量, 2016(3): 51-53.
    [8]
    金辉, 付强, 吴晓凤, 等. 重量法测定环境空气中PM2.5的不确定度[J]. 中国环境监测, 2014(6): 4.
    [9]
    国家环境保护局. 环境空气总悬浮颗粒物的测定 重量法: GB/T15432-1995[S]. 北京: 中国标准出版社, 1995.
    [10]
    环境保护部. 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范: HJ 656-2013[S]. 北京: 中国环境科学出版社, 2013.
    [11]
    环境保护部. 环境空气 PM10和PM2.5的测定 重量法: HJ 618-2011[S]. 北京: 中国环境科学出版社, 2011.
    [12]
    环境保护部. 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013.
    [13]
    何家庆, 付强, 夏新, 等. 环境空气PM2.5采样滤膜截留效率测试方法初探[C]. 中国环境科学学会学术年会, 2016.
    [14]
    朱修军, 杨文, 耿春梅, 等. 空气颗粒物采样滤膜截留效率研究[J]. 南开大学学报:自然科学版, 2018, 51(1): 6.
    [15]
    ASTM . Standard Method for Evaluation of Air, Assay Media by the Monodisperse DOP (Dioctyl Phthalate) Smoke Test: ASTM D2986-95a[S]. ASTM : American Society for Testing and Materials, 1995.
    [16]
    张文阁, 刘巍. 环境空气颗粒物测量中采样滤膜的应用[J]. 中国计量, 2020(6): 86-88.
    [17]
    郭亮. 自动换膜空气颗粒物采样器的结构设计与开发[D]. 青岛: 青岛大学, 2018.
    [18]
    胡梦想, 基于质量浓度的高效滤材过滤效率检测方法的研究[D]. 广州: 华南理工大学, 2022.
    [19]
    师耀龙, 王瑜, 魏连涛, 等. PM1与PM2.5切割器性能与测试系统研究[J]. 中国环境监测, 2022, 38(6): 221-227.
    [20]
    CEN. Gravimetric measurement method for the determination of the PM10 or PM2, 5 mass concentration of suspended particulate matter: EN 12341: 2014[S]. UK: BSI Standards Limited, 2014.
    [21]
    日本工业标准调查会(JISC). 小容量空气取样器: JIS Z8814-2012[S]. 日本: 日本标准协会, 2012.
    [22]
    张文阁, 刘巍, 许潇, 等. PM2.5监测仪检测用国家一级标准物质的研制[J]. 计量学报, 2019(1): 159-163.
    [23]
    袁柱梅, 赵俊颖, 陈胜利, 等. 亚微米级聚苯乙烯微球粒度标准物质的研制[J]. 过程工程学报, 2009, 9(S2): 7-11.
    [24]
    蒋立建, 王德生, 胡梦想, 等, 粒径分布可控的单分散气落胶发生器研究[J]. 环境科学与技术, 2022, 45(6): 162-170.
    [25]
    蒋立建. 基于单分散气溶胶的高效滤材过滤效率测试方法研究[D]. 广州: 华南理工大学, 2022.
    [26]
    郭黎旭, 刘俊杰, 刘悦, 等. 气体中微米级颗粒的数量浓度溯源技术研究山[J]. 计量学报, 2023, 44(11): 1755-1762.
    [27]
    杨古涵. 气溶胶粒径谱仪量值溯源体系的建立[D]. 北京: 中国石油大学, 2020.
    [28]
    解智博. 桂华侨, 张礁石, 等. 大气细颗粒物测量技术研究新进展[J]. 能源环境保护, 2023, 37(2): 16-29.
    [29]
    胡雪花, 郝敏钗, 王丽佳, 等, 气体中颗粒物质量浓度测量方法的比较研究[J]. 工业计量, 2023, 33(4): 18-22, 26.
    [30]
    张白, 王鹤, 高正, 等. 基于光学散射原理的气落胶光度计开发[J]. 电子测量技术2022, 45(7): 110-115.
    [31]
    王鹤. 基于光学散射原理的气胶光度计开发[D]. 银川: 北方民族大学, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (115) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return