Volume 68 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CAO Nan, ZHAO Lei. Loudspeaker System Identification Based on Adaptive Gradient Descent Algorithm[J]. Metrology Science and Technology, 2024, 68(3): 38-44. doi: 10.12338/j.issn.2096-9015.2023.0346
Citation: CAO Nan, ZHAO Lei. Loudspeaker System Identification Based on Adaptive Gradient Descent Algorithm[J]. Metrology Science and Technology, 2024, 68(3): 38-44. doi: 10.12338/j.issn.2096-9015.2023.0346

Loudspeaker System Identification Based on Adaptive Gradient Descent Algorithm

doi: 10.12338/j.issn.2096-9015.2023.0346
  • Received Date: 2023-12-12
  • Accepted Date: 2023-12-22
  • Rev Recd Date: 2023-12-26
  • Available Online: 2023-12-28
  • Publish Date: 2024-03-01
  • In loudspeaker model parameter identification, the conventional fixed-step gradient descent algorithm is time-consuming and often unstable when the initial parameter error is large. Therefore, a variable-step gradient descent algorithm for identifying speaker system parameters in the frequency domain is proposed. The adaptive method monitors the trend of the parameter identification process and adaptively adjusts the corresponding learning rate, eliminating the need for manual adjustment. Additionally, since directly calculating the gradient of a complex model is challenging, a central difference method is employed to approximate the model's gradient. By establishing a dynamic loudspeaker model and setting different initial values and iteration error termination criteria, the convergence and identification performance of the fixed-step method, least squares method, and adaptive-step method are compared. Micro loudspeakers are used for testing and verification. Simulations and experiments demonstrate that the proposed method has higher efficiency and better robustness to initial errors, exhibiting superior adaptability and universality.
  • loading
  • [1]
    沈勇. 扬声器系统的理论与应用[J]. 音响技术, 2012(2): 19.
    [2]
    R Small. Direct Radiator Loudspeaker System Analysis[J]. Audio Eng. Soc, 1972, 20(5): 307-327.
    [3]
    W Klippel. Green Speaker Design (Part 1: Optimal Use of Transducer Resources) [C]. Dublin, 2019.
    [4]
    W Klippel. Green Speaker Design (Part 2: Optimal Use of System Resources) [C]. Dublin, 2019.
    [5]
    孔晓鹏, 曾新吾, 田章福. 动圈扬声器涡流阻抗建模[J]. 国防科技大学学报, 2014, 36(6): 6. doi: 10.11887/j.cn.201406007
    [6]
    夏洁, 沈勇. 单元扬声器支撑系统的蠕变效应[J]. 电声技术, 2011, 35(2): 21-24.
    [7]
    刘成, 沈勇. 微型扬声器蠕变效应与小信号参数研究[C]. 2009年浙苏黑鲁津四省一市声学学术会议论文集, 2009
    [8]
    Klippel W. Adaptive nonlinear control of loudspeaker systems[J]. Journal of the Audio Engineering Society, 1998, 46(11): 939-954.
    [9]
    Klippel W. Nonlinear Adaptive Controller for Loudspeakers with Current Sensor[J]. Audio Engineering Society Convention, 1999, 5: 9900-9905.
    [10]
    Klippel, Wolfgang. Adaptive Stabilization of Electrodynamic Transducers[J]. Journal of the Audio Engineering Society: Audio, Acoustics, Applications, 2015, 63(3): 154-160.
    [11]
    Amrhein W . Method and arrangement for actuating electromechanical transducers: US07/681511[P]. [2023-12-26].
    [12]
    Klippel W, Seidel U. Fast and Accurate Measurement of the Linear Transducer Parameters [C]. Amsterdam : 110th Audio Engineering Society, 2001.
    [13]
    Bright A. Active Control of Loudspeakers: An Investigation of Practical Applications[J]. Technical University of Denmark, 2002, 11: 1.
    [14]
    Bright A. Adaptive iir filters for loudspeaker parameter tracking[J]. Audio Engineering Society, 2007, 9: 32.
    [15]
    Chen L, Pan K, Zhang Z, et al. Gradient Descent Method With Multiple Adaptive Step Sizes for Identifying Loudspeaker Nonlinearities[J]. Journal of the Audio Engineering Society, 2021, 69(3): 182-190. doi: 10.17743/jaes.2020.0071
    [16]
    Ruder S . An overview of gradient descent optimization algorithms[J/OL]. Machine Learning . DOI: 10.48550/arXiv.1609.04747.
    [17]
    Qian N. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999, 12(1): 145-151. doi: 10.1016/S0893-6080(98)00116-6
    [18]
    Shamir O. Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization[J/OL]. Omnipress. DOI: 10.48550/arXiv.1109.5647.
    [19]
    Lee J D , Simchowitz M , Jordan M I , et al. Gradient Descent Only Converges to Minimizers[C]. JMLR, 2016.
    [20]
    Butz M V , Goldberg D E , Lanzi P L . Gradient descent methods in learning classifier systems: improving XCS performance in multistep problems[J/OL]. IEEE Press. DOI: 10.1109/TEVC.2005.850265.
    [21]
    DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7): 2121-2159.
    [22]
    ZEILER M D. ADADELTA: an adaptive learning rate method[EB/OL]. [2021-12-22].https://doi.org/10.48550/arXiv.1212.5701.
    [23]
    TIELEMAN T, HINTON G. RMSProp: divide the gradient by a running average of its recent magnitude[R]. Toronto: University of Toronto, 2012.
    [24]
    KINGMA D, BA J. Adam: a method for stochastic optimization[C]. San Diego : Proc of the 3rd International Conference on Learning Representations, 2015.
    [25]
    REDDI S J, KALE S, KUMAR S. On the convergence of Adam and beyond[C]. Vancouver : Proc of the 6th Int Conf for Learning Representations, 2018.
    [26]
    Shin Y, Jérme Darbon, Karniadakis G E. Accelerating gradient descent and Adam via fractional gradients[J]. Neural Networks, 2023, 161: 185-201. doi: 10.1016/j.neunet.2023.01.002
    [27]
    陈立, 田兴, 夏洁, 等. 四阶带通箱的自回归滑动平均模型[J]. 应用声学, 2020, 39(4): 618-624.
    [28]
    Tian X, Shen Y, Chen L, et al. Identification of Nonlinear Fractional Derivative Loudspeaker Model[J]. Journal of the Audio Engineering Society, 2020, 68(5): 355-363. doi: 10.17743/jaes.2020.0010
    [29]
    Dodd M , Klippel W , Oclee-Brown J . Voice Coil Impedance as a Function of Frequency and Displacement[J/OL]. Audio Engineering Society Convention. DOI:http://dx. doi.org/.
    [30]
    孔晓鹏. 电动扬声器分数阶建模及非线性失真分析[D]. 长沙: 国防科学技术大学, 2015.
    [31]
    龚纯, 王正林. 精通Matlab最优化计算 [M]. 第三版. 北京: 电子工业出版社, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (81) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return