Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
XU Xiao, CHI Shunxin. Development of Calibration Equipment for PM2.5/PM10 Separators with Variable Flow Rates[J]. Metrology Science and Technology, 2024, 68(5): 65-69. doi: 10.12338/j.issn.2096-9015.2024.0040
Citation: XU Xiao, CHI Shunxin. Development of Calibration Equipment for PM2.5/PM10 Separators with Variable Flow Rates[J]. Metrology Science and Technology, 2024, 68(5): 65-69. doi: 10.12338/j.issn.2096-9015.2024.0040

Development of Calibration Equipment for PM2.5/PM10 Separators with Variable Flow Rates

doi: 10.12338/j.issn.2096-9015.2024.0040
  • Received Date: 2024-02-20
  • Accepted Date: 2024-02-28
  • Rev Recd Date: 2024-03-06
  • Available Online: 2024-05-16
  • Publish Date: 2024-05-18
  • The widespread use of low-flow-rate separators in particulate matter monitoring has highlighted a need for traceable calibration. This study focuses on developing calibration equipment for variable flow rate separators. By designing various aerosol atomizing nozzles and incorporating cyclone mixing and isokinetic sampling techniques, the calibration equipment was developed for PM2.5/PM10 separators operating at flow rates ranging from 1 to 16.7 L/min. The equipment addresses several technical challenges associated with flow rate variations during calibration. The deviation between the actual and working flow rates is within ±1%, and the expanded uncertainty of the Da50 calibration results is better than 3% (k=2), meeting both domestic and international standards.
  • loading
  • [1]
    Center for Public Health and Environmental Assessment. Integrated Science Assessment for Particulate Matter [R]. Research Triangle Park, NC: U. S. Environmental Protection Agency, 2019.
    [2]
    THOMAS M P, ROBERT W V, RUSSEL W W. Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS)[J]. Aerosol Science and Technology, 2001, 34: 389-397. doi: 10.1080/02786820120352
    [3]
    L C KENNY, T MERRIFIELD, D MARK, et al. The Development and Designation Testing of a New USEPA-Approved Fine Particle Inlet: A Study of the USEPA Designation Process[J]. Aerosol Science and Technology, 2004, 38: 15-22. doi: 10.1080/027868290502290
    [4]
    U. S. Environmental Protection Agency, Part 53 - Ambient Air Monitoring Reference and Equivalent Methods[EB/OL]. [2024-02-20].
    [5]
    国家市场监督管理总局, 国家标准化管理委员会. 环境空气 颗粒物质量浓度测定 重量法: GB/T 39193-2020[S]. 北京: 中国标准出版社, 2020.
    [6]
    环境保护部. 环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范: HJ 656-2013[S]. 北京: 中国环境科学出版社, 2013.
    [7]
    环境保护部. 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法: HJ 93-2013[S]. 北京: 中国环境科学出版社, 2013.
    [8]
    环境保护部. 环境空气质量手工监测技术规范: HJ 194-2017[S]. 北京: 中国环境科学出版社, 2017.
    [9]
    European Committee for Standardisation. Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter: EN 12341: 2014 [S]. Brussels, 2014.
    [10]
    THOMAS M P, ROBERT A G, LEE C K, et al. Evaluation of PM2.5 Size Selectors Used in Speciation Samplers[J]. Aerosol Science and Technology, 2001, 34: 422-429. doi: 10.1080/02786820119266
    [11]
    张文阁, 刘巍, 许潇, 等. PM2.5监测仪检测用国家一级标准物质的研制[J]. 计量学报, 2019, 40: 159-163. doi: 10.3969/j.issn.1000-1158.2019.z1.34
    [12]
    张文阁, 周文刚, 许潇, 等. PM10监测仪检测用国家一级标准物质的研制[J]. 中国计量, 2020, 2: 83-85.
    [13]
    陈仲辉, 张文阁, 黄星亮, 等. PM2.5切割器切割特性研究[J]. 中国计量, 2014, 8: 82-85.
    [14]
    阮兵, 李兴华, 谢岩, 等. PM2.5旋风切割器的性能测试与模拟[J]. 环境科学学报, 2018, 38: 2811-2817.
    [15]
    刘佳琪, 张国城, 吴丹, 等. PM10切割器捕集效率评价装置及方法研究[J]. 环境科学学报, 2021, 41: 2340-2346.
    [16]
    王婷, 刘巍, 张明, 等. 切割器切割特性试验装置的功能性验证方法探讨[J]. 计量科学与技术, 2022, 66: 41-45. doi: 10.12338/j.issn.2096-9015.2020.0371
    [17]
    刘佳琪, 张国城, 吴丹, 等. 基于静态箱法的PM2.5切割器捕集效率评价及拟合曲线优化研究[J]. 计量学报, 2021, 42: 1398-1403. doi: 10.3969/j.issn.1000-1158.2021.10.21
    [18]
    刘佳琪, 张国城, 吴丹, 等. PM1切割器的评价及其与PM2.5切割器的切换研究[J]. 环境科学学报, 2021, 41: 5093-5097.
    [19]
    刘佳琪, 张国城, 赵晓宁, 等. 进气流量对PM2.5切割器捕集效率的影响[J]. 计量学报, 2021, 42: 532-536. doi: 10.3969/j.issn.1000-1158.2021.04.20
    [20]
    刘佳琪, 张国城, 吴丹, 等. 不同种类颗粒物对切割器性能评价的影响研究[J]. 中国测试, 2022, 48: 27-31.
    [21]
    刘佳琪, 张国城, 吴丹, 等. 混合粒径颗粒物对切割器评价结果的影响研究[J]. 计量学报, 2022, 43: 1677-1682. doi: 10.3969/j.issn.1000-1158.2022.12.25
    [22]
    刘佳琪, 张国城, 吴丹, 等. 几种常见非国标法颗粒物切割器性能评价及问题分析[J]. 环境科学学报, 2021, 41: 4489-4493.
    [23]
    刘佳琪, 张国城, 赵晓宁, 等. 针对工作流量为2L·min-1的切割器的捕集效率评价研究[J]. 环境科学学报, 2021, 41: 2640-2646.
    [24]
    田莹, 张国城, 刘佳琪, 等. 不同类型颗粒物切割器采样流量与切割粒径关系研究[J]. 计量学报, 2023, 44: 1467-1472. doi: 10.3969/j.issn.1000-1158.2023.09.22
    [25]
    JONG-SANG Y, SEHYUN H, JAE-SEONG Y, et al. Development of PM10 and PM2.5 cyclones for small sampling ports at stationary sources: Numerical and experimental study[J]. Environmental Research, 2021, 193: 110507. doi: 10.1016/j.envres.2020.110507
    [26]
    ALIMOV ZB, YOUN H, IWATA A, et al. Comparison of the Chemical Characteristics and Toxicity of PM2.5 Collected Using Different Sizes of Cyclones[J]. Asian Journal of Atmospheric Environment, 2022, 16: 2022062.
    [27]
    PATEL P, AGGARWAL SG, LE TC, et al. Design and development of a PM10 multi-inlet cyclone and comparison with reference cyclones[J]. Air Quality, Atmosphere & Health, 2023, 16: 1955-1968.
    [28]
    许潇, 池顺鑫, 李想. 颗粒物质量浓度智慧计量平台的研制[J]. 计量科学与技术, 2022, 66: 71-76. doi: 10.12338/j.issn.2096-9015.2022.0178
    [29]
    国家质量监督检验检疫总局. PM2.5质量浓度测量仪校准规范: JJF 1659-2017[S]. 北京: 中国质检出版社, 2017.
    [30]
    国家质量监督检验检疫总局. 用蒙特卡洛法评定测量不确定度: JJF 1059.2-2012[S]. 北京: 中国质检出版社, 2012.
    [31]
    修宏宇, 崔伟群, 刘俊杰, 等. 采用蒙特卡洛法评定PM2.5切割粒径的不确定度[J]. 计量技术, 2017, 5: 3-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (64) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return