Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHOU Jingjing, HAO Xiaopeng, SONG Jian, GUO Guorui, LIU Zhiyi, XU Chunyuan. Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range[J]. Metrology Science and Technology, 2024, 68(5): 57-64. doi: 10.12338/j.issn.2096-9015.2024.0044
Citation: ZHOU Jingjing, HAO Xiaopeng, SONG Jian, GUO Guorui, LIU Zhiyi, XU Chunyuan. Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range[J]. Metrology Science and Technology, 2024, 68(5): 57-64. doi: 10.12338/j.issn.2096-9015.2024.0044

Development of a Vacuum Blackbody Radiation Source with Large Aperture and Wide Temperature Range

doi: 10.12338/j.issn.2096-9015.2024.0044
  • Received Date: 2024-02-23
  • Accepted Date: 2024-03-12
  • Rev Recd Date: 2024-03-19
  • Available Online: 2024-05-17
  • Publish Date: 2024-05-18
  • Vacuum blackbody radiation sources are crucial instruments for the radiometric calibration of infrared remote sensing payloads in ground laboratories. To meet the trend of infrared remote sensing payloads towards larger apertures, wider temperature ranges, and higher quantification, a vacuum blackbody radiation source with a 300 mm aperture, a temperature range of 160–380 K, and an emissivity of 0.9975 was developed. This paper introduces the working principle and structural design of the large aperture and wide temperature range vacuum blackbody radiation source. It includes the calculation of emissivity and thermal simulation of the blackbody. The uniformity and stability of the bottom temperature of the blackbody within the 160–380 K range under vacuum low-temperature conditions were tested. The results show that the bottom temperature uniformity is better than 0.120 K and the temperature control stability is better than 0.031 K/30 min. The blackbody cavity emissivity was measured using a method based on controlling environmental radiation, and the spectral radiance temperature was measured using a vacuum low-background infrared radiance temperature standard device. The combined standard uncertainties of the radiance temperature at 10 μm were 0.044 K@160 K, 0.099 K@280 K, 0.095 K@380 K, 0.122 K@380 K. The developed vacuum blackbody radiation source with a large aperture and wide temperature range can meet the radiometric calibration requirements of infrared remote sensing payloads in ground laboratories, supporting the enhancement of China's quantitative level of infrared remote sensing.
  • loading
  • [1]
    Liu C, Xie F, Dong X, et al. Small target detection from infrared remote sensing images using local adaptive thresholding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1941 − 1952. doi: 10.1109/JSTARS.2022.3151928
    [2]
    Smigaj M, Agarwal A, Bartholomeus H, et al. Thermal infrared remote sensing of stress responses in forest environments: a review of developments, Challenges, and Opportunities[J]. Current Forestry Reports, 2023, 1: 1 − 21.
    [3]
    Xie L, Wu S, Wu R, et al. Cross-comparison of radiation response characteristics between the FY-4B/AGRI and GK-2A/AMI in China[J]. Remote Sensing, 2023, 15(3): 779. doi: 10.3390/rs15030779
    [4]
    吴骅, 李秀娟, 李召良, 等. 高光谱热红外遥感: 现状与展望[J]. 遥感学报, 2021, 25(8): 1567 − 1590.
    [5]
    Hao X, Song J, Ding L, et al. Spaceborne radiance temperature standard blackbody for Chinese high-precision infrared spectrometer[J]. Metrologia, 2020, 57(6): 065016. doi: 10.1088/1681-7575/abbcc0
    [6]
    盛一成, 顿雄, 金伟其, 等. 星上红外遥感相机的辐射定标技术发展综述[J]. 红外与激光工程, 2019, 48(9): 18-30.
    [7]
    Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum variable-temperature blackbody VTBB100[J]. International Journal of Thermophysics, 2008, 29: 341 − 351. doi: 10.1007/s10765-007-0355-z
    [8]
    Morozova S P, Parfentiev N A, Lisiansky B E, et al. Vacuum variable medium temperature blackbody[J]. International Journal of Thermophysics, 2010, 31: 1809 − 1820. doi: 10.1007/s10765-010-0843-4
    [9]
    Blumstein D, Chalon G, Carlier T, et al. IASI instrument: technical overview and measured performances[J]. Infrared Spaceborne Remote Sensing XII, 2004, 5543: 196 − 207. doi: 10.1117/12.560907
    [10]
    Blumstein D, Tournier B, Cayla F R, et al. In-flight performance of the Infrared Atmospheric Sounding Interferometer (IASI) on METOP-A[C]. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS. International Society for Optics and Photonics, 2007, 6684: 66840H.
    [11]
    舒心, 郝小鹏, 宋健, 等. 100~ 400K 真空红外辐射亮温标准黑体辐射源研制[J]. 计量学报, 2019, 40(1): 13 − 19. doi: 10.3969/j.issn.1000-1158.2019.01.03
    [12]
    龚律宇, 郝小鹏, 孙建平, 等. H500型红外遥感定标高精度真空黑体辐射源的研制[J]. 计量学报, 2017, 38(2): 129 − 134. doi: 10.3969/j.issn.1000-1158.2017.02.01
    [13]
    扈又华, 郝小鹏, 司马瑞衡, 等. 大口径高发射率面型黑体辐射源的研制[J]. 计量学报, 2021, 42(3): 314 − 320. doi: 10.3969/j.issn.1000-1158.2021.03.09
    [14]
    Wang G, Xia C, Hao X, et al. Research on emissivity of surface blackbody with microarray structure based on Monte-Carlo method[C]. Conference on Infrared, Millimeter, Terahertz Waves and Applications (IMT2022). SPIE, 2023, 12565: 893 − 898.
    [15]
    丁经纬, 郝小鹏, 于坤, 等. 黑体涂层光谱发射率特性研究[J]. 红外与激光工程, 2023, 52(10): 234 − 243.
    [16]
    Zhang H, Hao X, Su W, et al. Strongly enhanced infrared emission of a black coating doped with multiwall carbon nanotubes[J]. Infrared Physics & Technology, 2021, 113: 103651.
    [17]
    Zhou J, Hao X, Wang X, et al. Highly emissive spaceborne blackbody radiation source based on light capture[J]. Optics Express, 2022, 30(12): 20859 − 20870. doi: 10.1364/OE.460564
    [18]
    Wang G, Xia C, Song J, et al. Optical reflection characteristic–based emissivity analysis of a pyramid array flat-plate blackbody for remote sensor calibration[J]. Optics Express, 2023, 31(11): 17878 − 17892. doi: 10.1364/OE.488111
    [19]
    Sapritsky V, Prokhorov A. Blackbody radiometry, vol. 1: fundamentals[M]. Switzerland: Springer, 2020, 1: 199 − 214.
    [20]
    Adibekyan A, Kononogova E, Monte C, et al. High-accuracy emissivity data on the coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6): 1 − 14.
    [21]
    Sima R, Hao X, Song J, et al. Research on the temperature transfer relationship between miniature fixed-point and blackbody for on-orbit infrared remote sensor calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 6266 − 6276.
    [22]
    Sima R H, Hao X P, Song J, et al. Accurate numerical model for characteristic temperature acquisition of miniature fixed-point blackbodies[J]. Measurement, 2021, 168: 108462. doi: 10.1016/j.measurement.2020.108462
    [23]
    宋健, 郝小鹏, 原遵东, 等. 基于控制环境辐射的黑体辐射源发射率测量方法研究[J]. 中国激光, 2015, 42(9): 269 − 275.
    [24]
    Song J, Hao X P, Yuan Z D, et al. Research of ultra-black coating emissivity based on a controlling the surrounding radiation method[J]. International Journal of Thermophysics, 2018, 39(7): 1 − 10.
    [25]
    Song J, Hao X, Yuan Z, et al. Integrating-sphere-free reflectometry of blackbody cavity emissivity using the ratio of hemispherical–given solid angle reflections[J]. Optics Express, 2020, 28(16): 23294 − 23305. doi: 10.1364/OE.394325
    [26]
    Hao X P, Song J, Xu M, et al. Vacuum radiance-temperature standard facility for infrared remote sensing at NIM[J]. International Journal of Thermophysics, 2018, 39(6): 1 − 14.
    [27]
    郝小鹏, 宋健, 孙建平, 等. 风云卫星的红外遥感辐射亮温国家计量标准装置[J]. 光学精密工程, 2015, 23(7): 1845 − 1851.
    [28]
    Saunders P, Fischer J, Sadli M, et al. Uncertainty budgets for calibration of radiation thermometers below the silver point[J]. International Journal of Thermophysics, 2008, 29: 1066 − -1083. doi: 10.1007/s10765-008-0385-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (98) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return