Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
LI Yihua, LU Gang, WANG Kun, WANG Zhipeng, JIN Sunjun, LIU Yijing. Determination and Evaluation of Dosimetric Parameters of Domestic Parallel Plate Ionization Chamber[J]. Metrology Science and Technology, 2024, 68(5): 17-23. doi: 10.12338/j.issn.2096-9015.2024.0052
Citation: LI Yihua, LU Gang, WANG Kun, WANG Zhipeng, JIN Sunjun, LIU Yijing. Determination and Evaluation of Dosimetric Parameters of Domestic Parallel Plate Ionization Chamber[J]. Metrology Science and Technology, 2024, 68(5): 17-23. doi: 10.12338/j.issn.2096-9015.2024.0052

Determination and Evaluation of Dosimetric Parameters of Domestic Parallel Plate Ionization Chamber

doi: 10.12338/j.issn.2096-9015.2024.0052
  • Received Date: 2024-02-26
  • Accepted Date: 2024-04-01
  • Rev Recd Date: 2024-04-11
  • Available Online: 2024-05-17
  • Publish Date: 2024-05-18
  • As a high-sensitivity radiation detector, ionization chambers play an important role in radiotherapy dose calibration and radiation environment monitoring. However, the field of radiotherapy dose measurement is highly dependent on imported equipment, and there is a lack of systematic experimental data supporting the dose stability and reliability of domestic detectors. This study focuses on the domestic QPPC40 parallel plate ionization chamber, quantitatively measuring its key dosimetric parameters in medical accelerator beams. These parameters include energy response, ion recombination, polarity effect, repeatability, leakage current, and dose linearity. The goal is to enhance the dosimetric performance of domestic detectors and provide practical recommendations for clinical applications. The measurement results indicate that the energy response correction factor kQ for 6 ~ 25 MV photon beam relative to Co-60 γ ray ranges from 0.991 to 0.961, with a repeatability of 0.02%. For 4 ~ 22 MeV electron beams, the kQ factor ranges from 0.953 to 0.887. At an operating voltage of -400 V, the ion recombination correction values for dose rates of 0.04-5.13 Gy/min range from 1.002 to 1.008. The polarization correction factor is 1.001, and the leakage current is within ±0.05%. The tested indicators generally meet the technical requirements of the JJG 912-2010 verification regulation for therapeutic level ionization chambers. However, the calibration coefficients and energy response consistency of ionization chambers from the same batch show some variability. It is recommended to conduct interim inspections during use and to monitor the long-term stability of the water-absorbed dose calibration coefficient and energy response of the detector.
  • loading
  • [1]
    Dewerd L A , Wagner L K . Characteristics of radiation detectors for diagnostic radiology[J]. Applied Radiation and Isotopes, 1999, 50(1): 125 − 136.
    [2]
    姚志凯, 纪文达, 史永吉, 等. 高能电子束特征分析及其在放射治疗中的应用研究[J]. 医疗卫生装备, 2013, 34(8): 128 − 130.
    [3]
    孙铭言, 张伟华, 童腾, 等. 新型平板电离室的研制与初步测试[J]. 辐射防护, 2022, 42(1): 71 − 79. doi: 10.3969/j.issn.1000-8187.2022.1.fsfh202201014
    [4]
    陈义珍, 林敏, 苏丹, 等. 平板电离室的研制及改进[J]. 原子能科学技术, 2008(S1): 380 − 384.
    [5]
    翟贺争, 武权, 赵徵鑫, 等. 辐射剂量测量的平板电离室及其辅助装置的研制及应用 [C]. 重庆: 中国医学装备协会, 2022.
    [6]
    Perini A P, Neves L P, Fernández-Varea J M, et al. A new parallel-plate graphite ionization chamber as a 60Co gamma radiation reference instrument[J]. Radiation Physics and Chemistry, 2014, 95: 106 − 108. doi: 10.1016/j.radphyschem.2013.01.005
    [7]
    Perini A P, Neves L P, Caldas L V E. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry[J]. Radiation Physics and Chemistry, 2014, 95: 94 − 97. doi: 10.1016/j.radphyschem.2013.03.006
    [8]
    Sharifi B, Zeinali H Z, Soltani J, et al. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 770: 177 − 181. doi: 10.1016/j.nima.2014.09.083
    [9]
    温特. 基于EPICS的HUST-PTF束损探测研究[D]. 武汉: 华中科技大学, 2020.
    [10]
    罗鹏, 李忠良, 冯冬, 等. 电离室电路耐辐照性能研究[J]. 科技与创新, 2020(10): 38 − 39.
    [11]
    支世杰, 王波, 李小松, 等. 高剂量率近距离治疗源井型电离室校准[J]. 核电子学与探测技术, 2023, 43(3): 528 − 533. doi: 10.3969/j.issn.0258-0934.2023.03.014
    [12]
    王继, 吴钦宏, 赵亮, 等. 高剂量率近距离~(192)Ir治疗源的井型电离室仪器的校准[J]. 计量学报, 2021, 42(9): 1232 − 1236. doi: 10.3969/j.issn.1000-1158.2021.09.18
    [13]
    张璇, 李德红, 张健, 等. 一种用于Hp(3)测量的电离室性能评价[J]. 同位素, 2022, 35(4): 289 − 296. doi: 10.7538/tws.2022.35.04.0241
    [14]
    言杰, 温中伟, 何遥, 等. 移动式微型裂变电离室中子探测器研制与核特性测试[J]. 核技术, 2023, 46(3): 54 − 60. doi: 10.11889/j.0253-3219.2023.hjs.46.030402
    [15]
    Nonato F B C, Sakuraba R K, da Cruz J C, et al. Characterization tests of a new parallel plate ionization chamber for use in electron beams[J]. Radiation Physics and Chemistry, 2014, 104: 244 − 247. doi: 10.1016/j.radphyschem.2014.06.011
    [16]
    王培玮, 郑伟宁. 用于同步辐射X射线注量绝对测量的自由空气电离室[J]. 计量学报, 2020, 41(10): 1303 − 1307. doi: 10.3969/j.issn.1000-1158.2020.10.20
    [17]
    邱顺利, 葛孟团, 肖伟, 等. 一种圆柱型裂变电离室的核性能研究[J]. 同位素, 2023, 36(4): 451 − 459. doi: 10.7538/tws.2023.36.04.0451
    [18]
    朱静, 汪启胜, 黄胜, 等. 上海光源新型一维位置灵敏电离室研制[J]. 光学精密工程, 2010, 18(3): 544 − 551.
    [19]
    刘川凤, 成建波, 李德红, 等. 48 keV~1.25 MeV X/γ射线空腔电离室研制及性能测试[J]. 计量学报, 2023, 44(12): 1889 − 1896. doi: 10.3969/j.issn.1000-1158.2023.12.15
    [20]
    王志鹏. 医用电子束水吸收剂量绝对测量及量值传递方法研究[D]. 北京: 北京交通大学, 2021.
    [21]
    苌雪, 王坤, 张健, 等. 高能光子水吸收剂量辐射质转换因子的实验测量[J]. 中国医学物理学杂志, 2017, 34(12): 1196 − 1199. doi: 10.3969/j.issn.1005-202X.2017.12.002
    [22]
    王志鹏, 王坤, 金孙均, 等. 医用电子束水吸收剂量测量及其不确定度讨论[J]. 计量学报, 2023, 44(12): 1897 − 1903. doi: 10.3969/j.issn.1000-1158.2023.12.16
    [23]
    Zhipeng W , Kun W , Sunjun J , et al. Development and application of absorbed dose primary standard for Co and high-energy photon beams using water calorimetry[J]. Metrologia, 2023, 60(2): 1.
    [24]
    张晓乐. (50-125)kV脉冲X射线参考辐射场建立及其参数研究[D]. 兰州: 兰州大学, 2022.
    [25]
    范耀东, 罗琛, 金孙均, 等. 基于IAEA TRS398报告的加速器水吸收剂量测量方法[J]. 计量技术, 2019(10): 7 − 10.
    [26]
    杭仲斌, 田丽霞, 宋明哲, 等. 外推电离室关键参数测量方法的研究[J]. 中国测试, 2021, 47(5): 1 − 5,23. doi: 10.11857/j.issn.1674-5124.2021040198
    [27]
    黄平, 漆成龙, 董文龙, 等. 基于石墨球形电离室测量γ射线低空气比释动能率[J]. 核电子学与探测技术, 2022, 42(4): 677 − 682. doi: 10.3969/j.issn.0258-0934.2022.04.022
    [28]
    刘川凤, 李德红, 王红玉, 等. 用于国产6711型~(125)I粒籽源空气比释动能强度测量的外推电离室初步研究[J]. 原子能科学技术, 2022, 56(10): 2195 − 2202. doi: 10.7538/yzk.2021.youxian.1025
    [29]
    孙光智, 邱顺利, 肖伟, 等. 一种用于高温高压环境高量程辐射监测仪的研制[J]. 核技术, 2021, 44(4): 55 − 60. doi: 10.11889/j.0253-3219.2021.hjs.44.040402
    [30]
    唐彬, 徐治国, 胡正国, 等. 重离子治癌终端的束流强度及剂量监测系统[J]. 强激光与粒子束, 2011, 23(4): 1056 − 1060.
    [31]
    李明, 徐利军, 毛娜请, 等. 电离室型氚监测仪校准方法及影响因素研究[J]. 核电子学与探测技术, 2022, 42(5): 793 − 798.
    [32]
    李莉, 高飞, 陈义珍, 等. 高气压电离室环境适应性、可靠性和计量特性的设计与测试[J]. 同位素, 2023, 36(3): 295 − 306. doi: 10.7538/tws.2023.36.03.0295
    [33]
    刘川凤, 李德红, 黄建微, 等. 基于电离法的pA级直流恒流源系统的研究[J]. 核电子学与探测技术, 2022, 42(6): 987 − 991.
    [34]
    Han R C, Li Y J, Pu Y H. Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy[J]. Nuclear Science and Techniques, 2020, 31(2): 13. doi: 10.1007/s41365-020-0722-z
    [35]
    张绍刚, 于世平, 刘原照, 等. 平行板电离室对全身皮肤电子束治疗的吸收剂量测量[J]. 中华放射医学与防护杂志, 2000(1): 64 − 67. doi: 10.3760/cma.j.issn.0254-5098.2000.01.022
    [36]
    薛娴, 罗素明, 何志坚, 等. 平行板电离室两种校准方法研究[J]. 中国辐射卫生, 2016, 25(3): 364 − 368.
    [37]
    Musolino S V. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; Technical Reports Series No. 398[J]. Health Physics, 2001, 81(5): 592 − 593.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (211) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return