Volume 68 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
ZHOU Xirui, GU Renji, MA Ruimin, JIANG Wencan, LUO Shizhong, FENG Liuxing. Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers[J]. Metrology Science and Technology, 2024, 68(9): 41-50. doi: 10.12338/j.issn.2096-9015.2024.0054
Citation: ZHOU Xirui, GU Renji, MA Ruimin, JIANG Wencan, LUO Shizhong, FENG Liuxing. Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers[J]. Metrology Science and Technology, 2024, 68(9): 41-50. doi: 10.12338/j.issn.2096-9015.2024.0054

Advances in Measurement Techniques and Standardization of Alzheimer's Disease Biomarkers

doi: 10.12338/j.issn.2096-9015.2024.0054
  • Received Date: 2024-02-27
  • Accepted Date: 2024-03-27
  • Rev Recd Date: 2024-03-28
  • Available Online: 2024-07-04
  • Publish Date: 2024-09-18
  • Alzheimer's disease (AD) is an irreversible neurodegenerative disorder highly prevalent in the elderly population aged 65 and above. With increasing global population aging, AD has become a major issue affecting public health and social development worldwide. The pathogenesis of AD remains unclear, and currently, there are no effective drugs to reverse or prevent disease progression. Utilizing a comprehensive and highly specific combination of diagnostic biomarkers for early AD detection is crucial for precise diagnosis and a prerequisite for effective treatment. Developing highly sensitive, accurate, and high-throughput quantitative techniques for AD diagnostic biomarkers is an effective approach to obtain reliable results and meets the urgent need for clinical AD diagnosis. Promoting the standardization of AD diagnostic biomarker-related tests can significantly improve the consistency, interchangeability, and traceability of results obtained from different detection platforms. This review outlines the evolution of AD diagnostic criteria and the current status of drug development, lists important disease-related diagnostic biomarkers, introduces and compares relevant measurement and detection techniques, and finally analyzes and prospects the standardization status of precise measurement techniques for AD diagnostic biomarkers. We aim to provide valuable guidance for promoting the development of related reference materials and the establishment of reference measurement procedures, as well as improving the performance of in vitro diagnostic (IVD) products and platforms in this field.
  • loading
  • [1]
    JACK C R, ALBERT M S, KNOPMAN D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2011, 7(3): 257-262.
    [2]
    DUBOIS B, FELDMAN H H, JACOVA C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria[J]. The Lancet Neurology, 2014, 13(6): 614-629. doi: 10.1016/S1474-4422(14)70090-0
    [3]
    JACK C R, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease[J]. Alzheimer’s Dement, 2018, 14(4): 535-562. doi: 10.1016/j.jalz.2018.02.018
    [4]
    DHAPOLA R, HOTA S S, SARMA P, et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease[J]. Inflammopharmacology, 2021, 29(6): 1669-1681. doi: 10.1007/s10787-021-00889-6
    [5]
    LAFERLA F M, GREEN K N, ODDO S. Intracellular amyloid-β in Alzheimer’s disease[J]. Nature Reviews Neuroscience, 2007, 8(7): 499-509. doi: 10.1038/nrn2168
    [6]
    VERMA A, KUMAR WAIKER D, BHARDWAJ B, et al. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer’s disease[J]. Bioorganic Chemistry, 2022, 119: 105562. doi: 10.1016/j.bioorg.2021.105562
    [7]
    SEUBERT P, OLTERSDORF T, LEE M G, et al. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide[J]. Nature, 1993, 361(6409): 260-263. doi: 10.1038/361260a0
    [8]
    HAASS C, SCHLOSSMACHER M G, HUNG A Y, et al. Amyloid β-peptide is produced by cultured cells during normal metabolism[J]. Nature, 1992, 359(6393): 322-325. doi: 10.1038/359322a0
    [9]
    CHEN G F, XU T H, YAN Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development[J]. Acta Pharmacologica Sinica, 2017, 38(9): 1205-1235. doi: 10.1038/aps.2017.28
    [10]
    BLENNOW K, DE LEON M J, ZETTERBERG H. Alzheimer’s disease[J]. The Lancet, 2006, 368(9533): 387-403. doi: 10.1016/S0140-6736(06)69113-7
    [11]
    MASTERS C L, SIMMS G, WEINMAN N A, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome[J]. Proceedings of the National Academy of Sciences, 1985, 82(12): 4245-4249. doi: 10.1073/pnas.82.12.4245
    [12]
    LEHMANN S, DUMURGIER J, AYRIGNAC X, et al. Cerebrospinal fluid A beta 1–40 peptides increase in Alzheimer’s disease and are highly correlated with phospho-tau in control individuals[J]. Alzheimer’s Research & Therapy, 2020, 12(1): 123.
    [13]
    BLENNOW K, DUBOIS B, FAGAN A M, et al. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease[J]. Alzheimer’s & Dementia, 2015, 11(1): 58-69.
    [14]
    SHAW L M, KORECKA M, CLARK C M, et al. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics[J]. Nature Reviews Drug Discovery, 2007, 6(4): 295-303. doi: 10.1038/nrd2176
    [15]
    BENZINGER T L S, BLAZEY T, JACK C R, et al. Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): E4502-E4509.
    [16]
    TEUNISSEN C E, VERBERK I M W, THIJSSEN E H, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation[J]. The Lancet Neurology, 2022, 21(1): 66-77. doi: 10.1016/S1474-4422(21)00361-6
    [17]
    BILGEL M, AN Y, WALKER K A, et al. Longitudinal changes in Alzheimer’s-related plasma biomarkers and brain amyloid[J]. Alzheimer’s & Dementia, 2023, 19(10): 4335-4345.
    [18]
    AMFT M, ORTNER M, EICHENLAUB U, et al. The cerebrospinal fluid biomarker ratio Aβ42/40 identifies amyloid positron emission tomography positivity better than Aβ42 alone in a heterogeneous memory clinic cohort[J]. Alzheimer’s Research & Therapy, 2022, 14(1): 60.
    [19]
    WEINGARTEN M D, LOCKWOOD A H, HWO S Y, et al. A protein factor essential for microtubule assembly[J]. Proceedings of the National Academy of Sciences, 1975, 72(5): 1858-1862. doi: 10.1073/pnas.72.5.1858
    [20]
    WANG Y, MANDELKOW E. Tau in physiology and pathology[J]. Nature Reviews Neuroscience, 2016, 17(1): 22-35. doi: 10.1038/nrn.2015.1
    [21]
    DIXIT R, ROSS J L, GOLDMAN Y E, et al. Differential regulation of dynein and kinesin motor proteins by tau[J]. Science, 2008, 319: 1086-1089. doi: 10.1126/science.1152993
    [22]
    HANGER D P, ANDERTON B H, NOBLE W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease[J]. Trends Mol Med, 2009, 15(3): 112-119. doi: 10.1016/j.molmed.2009.01.003
    [23]
    MARTIN L, LATYPOVA X, TERRO F. Post-translational modifications of tau protein: implications for Alzheimer’s disease[J]. Neurochem Int, 2011, 58(4): 458-471. doi: 10.1016/j.neuint.2010.12.023
    [24]
    MIELKE M M, DAGE J L, FRANK R D, et al. Performance of plasma phosphorylated tau 181 and 217 in the community[J]. Nature Medicine, 2022, 28(7): 1398-1405. doi: 10.1038/s41591-022-01822-2
    [25]
    PALMQVIST S, JANELIDZE S, QUIROZ Y T, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer Disease vs other neurodegenerative disorders[J]. JAMA, 2020, 324(8): 772-781. doi: 10.1001/jama.2020.12134
    [26]
    ISHIKAWA H, BISCHOFF R, HOLTZER H. Mitosis and intermediate-sized filaments in developing skeletal muscle[J]. The Journal of Cell Biology, 1968, 38(3): 538-555. doi: 10.1083/jcb.38.3.538
    [27]
    PETZOLD A. Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss[J]. Journal of the Neurological Sciences, 2005, 233(1-2): 183-198. doi: 10.1016/j.jns.2005.03.015
    [28]
    Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations[J]. Histochemistry Cell Biology, 2013, 140(1): 13-22. doi: 10.1007/s00418-013-1101-1
    [29]
    KUHLE J, GAIOTTINO J, LEPPERT D, et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome[J]. J Neurol Neurosurg Psychiatry, 2015, 86(3): 273-279. doi: 10.1136/jnnp-2013-307454
    [30]
    LU C H, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis[J]. Neurology, 2015, 84(22): 2247-2257. doi: 10.1212/WNL.0000000000001642
    [31]
    Bäckström DC, Eriksson Domellöf M, Linder J, et al. Cerebrospinal Fluid Patterns and the Risk of Future Dementia in Early, Incident Parkinson Disease[J]. JAMA Neurology, 2015, 72(10): 1175-1182. doi: 10.1001/jamaneurol.2015.1449
    [32]
    SCHERLING C S, HALL T, BERISHA F, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration[J]. Annals of Neurology, 2014, 75(1): 116-126. doi: 10.1002/ana.24052
    [33]
    ZETTERBERG H, SKILLBäCK T, MATTSSON N, et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer Disease progression[J]. JAMA Neurology, 2016, 73(1): 60-67. doi: 10.1001/jamaneurol.2015.3037
    [34]
    BACIOGLU M, MAIA L F, PREISCHE O, et al. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases[J]. Neuron, 2016, 91(1): 56-66. doi: 10.1016/j.neuron.2016.05.018
    [35]
    BRUREAU A, BLANCHARD-BREGEON V, PECH C, et al. NF-L in cerebrospinal fluid and serum is a biomarker of neuronal damage in an inducible mouse model of neurodegeneration[J]. Neurobiology of Disease, 2017, 104: 73-84. doi: 10.1016/j.nbd.2017.04.007
    [36]
    WESTON P S J, POOLE T, RYAN N S, et al. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration[J]. Neurology, 2017, 89(21): 2167-2175. doi: 10.1212/WNL.0000000000004667
    [37]
    PREISCHE O, SCHULTZ S A, APEL A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease[J]. Nature Medicine, 2019, 25(2): 277-283. doi: 10.1038/s41591-018-0304-3
    [38]
    BRAUNEWELL K H, SZANTO A J K. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins[J]. Cell and Tissue Research, 2009, 335(2): 301-316. doi: 10.1007/s00441-008-0716-3
    [39]
    BURGOYNE R D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling[J]. Nature Reviews Neuroscience, 2007, 8(3): 182-193. doi: 10.1038/nrn2093
    [40]
    TAN Z, JIANG J, TIAN F, et al. Serum visinin-like protein 1 is a better biomarker than neuron-specific enolase for seizure-induced neuronal injury: a prospective and observational study[J]. Frontiers in Neurology, 2020, 11: 567587. doi: 10.3389/fneur.2020.567587
    [41]
    TARAWNEH R, LEE J M, LADENSON J H, et al. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease[J]. Neurology, 2012, 78(10): 709-719. doi: 10.1212/WNL.0b013e318248e568
    [42]
    HALBGEBAUER S, STEINACKER P, RIEDEL D, et al. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer’s and other neurodegenerative diseases[J]. Alzheimer’s Research & Therapy, 2022, 14(1): 175.
    [43]
    GROBLEWSKA M, MUSZYŃSKI P, WOJTULEWSKA-SUPRON A, et al. The Role of Visinin-Like Protein-1 in the Pathophysiology of Alzheimer’s Disease[J]. J Alzheimers Dis, 2015, 47(1): 17-32. doi: 10.3233/JAD-150060
    [44]
    MOTTER R, VIGO-PELFREY C, KHOLODENKO D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease[J]. Annals of Neurology, 1995, 38(4): 643-648. doi: 10.1002/ana.410380413
    [45]
    VANMECHELEN E, VANDERSTICHELE H, DAVIDSSON P, et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization[J]. Neuroscience Letters, 2000, 285(1): 49-52. doi: 10.1016/S0304-3940(00)01036-3
    [46]
    BITTNER T, ZETTERBERG H, TEUNISSEN C E, et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid[J]. Alzheimer’s & Dementia, 2016, 12(5): 517-526.
    [47]
    LIFKE V, KOLLMORGEN G, MANUILOVA E, et al. Elecsys® Total-Tau and Phospho-Tau (181P) CSF assays: Analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid[J]. Clinical Biochemistry, 2019, 72: 30-38. doi: 10.1016/j.clinbiochem.2019.05.005
    [48]
    BAYART J, HANSEEUW B, IVANOIU A, et al. Analytical and clinical performances of the automated Lumipulse cerebrospinal fluid A beta(42) and T-Tau assays for Alzheimer’s disease diagnosis[J]. Journal of neurology, 2019, 266(9): 2304-2311. doi: 10.1007/s00415-019-09418-6
    [49]
    GORDON R F, MCDADE R L. Multiplexed quantification of human IgG, IgA, and IgM with the FlowMetrix system[J]. Clin Chem, 1997, 43(9): 1799-1801. doi: 10.1093/clinchem/43.9.1799
    [50]
    PRABHAKAR U, EIRIKIS E, DAVIS H M. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP assay[J]. J Immunol Methods, 2002, 260(1-2): 207-218. doi: 10.1016/S0022-1759(01)00543-9
    [51]
    OLSSON A, VANDERSTICHELE H, ANDREASEN N, et al. Simultaneous measurement of beta-amyloid(1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology[J]. Clin Chem, 2005, 51(2): 336-345. doi: 10.1373/clinchem.2004.039347
    [52]
    REIJN T S, RIKKERT MO, VAN GEEL W J A, et al. Diagnostic accuracy of ELISA and xMAP technology for analysis of amyloid beta(42) and tau proteins[J]. Clin Chem, 2007, 53(5): 859-865. doi: 10.1373/clinchem.2006.081679
    [53]
    WEISSLEDER R. Molecular imaging: exploring the next frontier[J]. Radiology, 1999, 212(3): 609-614. doi: 10.1148/radiology.212.3.r99se18609
    [54]
    GORDON B A, BLAZEY T M, SU Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study[J]. Lancet Neurol, 2018, 17(3): 241-250. doi: 10.1016/S1474-4422(18)30028-0
    [55]
    VILLEMAGNE V L, BURNHAM S, BOURGEAT P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study[J]. Lancet Neurology, 2013, 12(4): 357-367. doi: 10.1016/S1474-4422(13)70044-9
    [56]
    Pemberton HG, Collij LE, Heeman F, et al. Quantification of amyloid PET for future clinical use: a state-of-the-art review[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3508-3528. doi: 10.1007/s00259-022-05784-y
    [57]
    TIAN M, ZUO C, CIVELEK A C, et al. International nuclear medicine consensus on the clinical use of amyloid positron emission tomography in Alzheimer’s Disease[J]. Phenomics, 2023, 3(4): 375-389. doi: 10.1007/s43657-022-00068-9
    [58]
    SCHöLL M, MAASS A, MATTSSON N, et al. Biomarkers for tau pathology[J]. Molecular and Cellular Neuroscience, 2019, 97: 18-33. doi: 10.1016/j.mcn.2018.12.001
    [59]
    TIAN M, CIVELEK A C, CARRIO I, et al. International consensus on the use of tau PET imaging agent (18)F-flortaucipir in Alzheimer’s disease[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 895-904. doi: 10.1007/s00259-021-05673-w
    [60]
    RISSIN D M, KAN C W, CAMPBELL T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J]. Nature Biotechnology, 2010, 28(6): 595-599. doi: 10.1038/nbt.1641
    [61]
    COHEN L, CUI N, CAI Y, et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay[J]. ACS Nano, 2020, 14(8): 9491-9501. doi: 10.1021/acsnano.0c02378
    [62]
    WANG D, WANG X, YE F, et al. An integrated amplification-free digital crispr/cas-assisted assay for single molecule detection of RNA[J]. ACS Nano, 2023, 17(8): 7250-7256. doi: 10.1021/acsnano.2c10143
    [63]
    REN M, DONG Y, WANG J, et al. Computer vision-assisted smartphone microscope imaging digital immunosensor based on click chemistry-mediated microsphere counting technology for the detection of aflatoxin B1 in peanuts[J]. Analytica Chimica Acta, 2023, 1278: 341687. doi: 10.1016/j.aca.2023.341687
    [64]
    LEIRS K, DAL DOSSO F, PEREZ-RUIZ E, et al. Bridging the Gap between digital assays and point-of-care testing: automated, low cost, and ultrasensitive detection of thyroid stimulating hormone[J]. Analytical Chemistry, 2022, 94(25): 8919-8927. doi: 10.1021/acs.analchem.2c00480
    [65]
    SHI Y, LU X, ZHANG L, et al. Potential value of plasma amyloid-β, total tau, and neurofilament light for identification of early Alzheimer’s disease[J]. ACS Chemical Neuroscience, 2019, 10(8): 3479-3485. doi: 10.1021/acschemneuro.9b00095
    [66]
    NI M, ZHU Z H, GAO F, et al. Plasma core alzheimer’s disease biomarkers predict amyloid deposition burden by positron emission tomography in chinese individuals with cognitive decline[J]. ACS Chemical Neuroscience, 2023, 14(1): 170-179. doi: 10.1021/acschemneuro.2c00636
    [67]
    XIE Q, NI M, GAO F, et al. Correlation between cerebrospinal fluid core Alzheimer’s disease biomarkers and β-amyloid PET in Chinese dementia population[J]. ACS Chemical Neuroscience, 2022, 13(10): 1558-1565. doi: 10.1021/acschemneuro.2c00120
    [68]
    SEINO Y, NAKAMURA T, HARADA T, et al. Quantitative measurement of cerebrospinal fluid amyloid-β species by mass spectrometry[J]. Journal of Alzheimer’s Disease, 2021, 79: 573-584. doi: 10.3233/JAD-200987
    [69]
    ZOU Y, MA X, MAO C, et al. Automated magnetic-bead-assisted sequential extraction technology for simultaneous detection of Aβ1-42 and Aβ1-40 in cerebrospinal fluid: An advance toward fully automated liquid chromatography-tandem mass spectrometry method[J]. Journal of Chromatography A, 2024, 1713: 1.
    [70]
    LEINENBACH A, PANNEE J, DüLFFER T, et al. Mass spectrometry–based candidate reference measurement procedure for quantification of amyloid-β in cerebrospinal fluid[J]. Clinical Chemistry, 2014, 60(7): 987-994. doi: 10.1373/clinchem.2013.220392
    [71]
    MCAVOY T, LASSMAN M E, SPELLMAN D S, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry[J]. Clinical Chemistry, 2014, 60(4): 683-689. doi: 10.1373/clinchem.2013.216515
    [72]
    BROS P, VIALARET J, BARTHELEMY N, et al. Antibody-free quantification of seven tau peptides in human CSF using targeted mass spectrometry[J]. Front Neurosci, 2015, 9: 302.
    [73]
    BJERKE M, ANDREASSON U, KUHLMANN J, et al. Assessing the commutability of reference material formats for the harmonization of amyloid-β measurements[J]. Clin Chem Lab Med, 2016, 54(7): 1177-1191. doi: 10.1515/cclm-2015-0733
    [74]
    LAME M E, CHAMBERS E E, BLATNIK M. Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry[J]. Analytical biochemistry, 2011, 419(2): 133-139. doi: 10.1016/j.ab.2011.08.010
    [75]
    PANNEE J, PORTELIUS E, MINTHON L, et al. Reference measurement procedure for CSF amyloid beta (Aβ)1–42 and the CSF Aβ1–42/Aβ1–40 ratio-a cross-validation study against amyloid PET[J]. Journal of Neurochemistry, 2016, 139(4): 651-658. doi: 10.1111/jnc.13838
    [76]
    KORECKA M, FIGURSKI M J, LANDAU S M, et al. Analytical and clinical performance of amyloid-beta peptides measurements in CSF of ADNIGO/2 participants by an LC–MS/MS reference method[J]. Clinical Chemistry, 2020, 66(4): 587-597. doi: 10.1093/clinchem/hvaa012
    [77]
    ZOU Y, MA X, MAO C, et al. Automated magnetic-bead-assisted sequential extraction technology for simultaneous detection of Aβ1-42 and Aβ1-40 in cerebrospinal fluid: An advance toward fully automated liquid chromatography-tandem mass spectrometry method[J]. Journal of Chromatogrraphy A, 2024, 1713: 464531. doi: 10.1016/j.chroma.2023.464531
    [78]
    FENG L, HUO Z, XIONG J, et al. Certification of amyloid-beta (aβ) certified reference materials by amino acid-based isotope dilution high-performance liquid chromatography mass spectrometry and sulfur-based high-performance liquid chromatography isotope dilution inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2020, 92(19): 13229-13237. doi: 10.1021/acs.analchem.0c02381
    [79]
    BOULO S, KUHLMANN J, ANDREASSON U, et al. First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays[J]. Alzheimer’s & Dementia, 2020, 16(11): 1493-1503.
    [80]
    GIANGRANDE C, VANEECKHOUTTE H, BOEUF A, et al. Development of a candidate reference measurement procedure by ID-LC-MS/MS for total tau protein measurement in cerebrospinal fluid (CSF)[J]. Clin Chem Lab Med, 2023, 61(7): 1235-1244. doi: 10.1515/cclm-2022-1250
    [81]
    ZANG Y, ZHOU X, PAN M, et al. Certification of visinin-like protein-1 (VILIP-1) certified reference material by amino acid-based and sulfur-based liquid chromatography isotope dilution mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2023, 415(1): 211-220. doi: 10.1007/s00216-022-04401-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (240) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return