Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
LIU Yang, LI Lianfu, WANG Deli, JIANG Yuanlin, LI Jianshuang, LIU Xiaodong, MIAO Dongjing, HE Mingzhao. Study on Scale Frequency Measurement and Temperature Influence of Total Station[J]. Metrology Science and Technology, 2024, 68(5): 37-43. doi: 10.12338/j.issn.2096-9015.2024.0056
Citation: LIU Yang, LI Lianfu, WANG Deli, JIANG Yuanlin, LI Jianshuang, LIU Xiaodong, MIAO Dongjing, HE Mingzhao. Study on Scale Frequency Measurement and Temperature Influence of Total Station[J]. Metrology Science and Technology, 2024, 68(5): 37-43. doi: 10.12338/j.issn.2096-9015.2024.0056

Study on Scale Frequency Measurement and Temperature Influence of Total Station

doi: 10.12338/j.issn.2096-9015.2024.0056
  • Received Date: 2024-02-28
  • Accepted Date: 2024-03-15
  • Rev Recd Date: 2024-04-06
  • Available Online: 2024-05-16
  • Publish Date: 2024-05-18
  • The total station is a high-precision measuring instrument that integrates distance measurement, angle measurement, and coordinate measurement, playing a crucial role in infrastructure construction and geodetic surveying. Among its various parameters, changes in measuring scale frequency are the main source of distance measurement scale error. This parameter is fundamental to understanding the distance measurement characteristics of the instrument and can essentially characterize the scale error. This paper reports on the development of an automatic measurement system for the total station scale frequency, utilizing high-precision frequency measurement technology referenced to an atomic clock for real-time dynamic measurement. Furthermore, using the developed automatic measurement system, an in-depth study was conducted on the temperature characteristics affecting the scale frequency by controlling the ambient temperature. This research is significant for further evaluating the distance measurement performance of total stations and for identifying the sources of distance multiplication constant errors during calibration and verification processes.
  • loading
  • [1]
    潘廷耀, 范百兴, 易旺民, 等. 大尺寸动态测量技术综述[J]. 测绘与空间地理信息, 2015, 38(8): 70-72,76. doi: 10.3969/j.issn.1672-5867.2015.08.023
    [2]
    李萍, 李建双, 赫明钊, 等. 基于空气环境参数自动测量系统的全站仪测距精度校准技术[J]. 计量学报, 2019, 40(S1): 12-16. doi: 10.3969/j.issn.1000-1158.2019.z1.03
    [3]
    陈杨. 基于绝对测距的野外基线溯源关键技术的研究[D]. 杭州: 中国计量大学, 2018.
    [4]
    陈杨, 李建双, 缪东晶, 等, 基于传感器阵列的野外基线环境参数自动测量系统研究[J]. 计量学报, 2018, 39(4): 455-460.
    [5]
    刘沛. 自动化全站仪在高层建筑基坑变形监测中的应用[J]. 测绘与空间地理信息, 2011, 34(3): 239-241. doi: 10.3969/j.issn.1672-5867.2011.03.080
    [6]
    韩军强, 黄观武, 黄观文, 等. 多种监测手段在滑坡变形中的组合应用[J]. 测绘科学, 2019, 44(11): 116-122.
    [7]
    杨维芳, 杨博雄, 傅辉清. 光电测距检定中带权加常数与乘常数分析[J]. 大地测量与地球动力学, 2007(2): 125-127. doi: 10.3969/j.issn.1671-5942.2007.02.025
    [8]
    杨俊志. 论测距仪的加乘常数检测[J]. 测绘科技动态, 1989(6): 1-12.
    [9]
    陆洪波, 李荃. 全站仪加常数、乘常数测量不确定度评定[J]. 北京测绘, 2008(1): 11-13,10. doi: 10.3969/j.issn.1007-3000.2008.01.004
    [10]
    毛能武. 第四讲 仪器加常数和乘常数的检定[J]. 铁路航测, 1982(2): 45-55.
    [11]
    杨维芳, 傅辉清. 光电测距仪检定方法研究进展[J]. 光学仪器, 2008(4): 77-81. doi: 10.3969/j.issn.1005-5630.2008.04.018
    [12]
    叶晓明, 凌模, 陈增辉. 再谈测距仪加、乘常数的检验[J]. 测绘信息与工程, 2005(6): 34-36. doi: 10.3969/j.issn.1007-3817.2005.06.017
    [13]
    张子达, 杨维芳, 姬晓晓, 等. 全站仪加常数和乘常数测量不确定度研究[J]. 计量学报, 2023, 44(9): 1369-1374. doi: 10.3969/j.issn.1000-1158.2023.09.08
    [14]
    时振伟, 王长云, 李金鑫. 全站仪加、乘常数检定精度的影响因素及对策分析[J]. 工业计量2021, 31(4): 78-80.
    [15]
    国家质量监督检疫总局. 光电测距仪: JJG 703-2003 [S]. 北京: 中国标准出版社, 2003.
    [16]
    朱凤敏, 刘喜. 国内测绘仪器计量检定现状综述与建议[J]. 测绘与空间地理信息, 2020, 43(12): 175-178. doi: 10.3969/j.issn.1672-5867.2020.12.049
    [17]
    施晓勇, 费文杰, 周忆宁. 全站仪检定中加乘常数的分析比较[C]. 浙江省测绘与地理信息学会. 湖南省地图出版社, 2016.
    [18]
    王福学, 韩庆龙, 韩正阳. 浅析全站仪加常数、乘常数[J]. 测绘与空间地理信息, 2011, 34(2): 248-250. doi: 10.3969/j.issn.1672-5867.2011.02.091
    [19]
    姬洪亮. 测距仪加乘常数等权计算的合理性分析[J]. 测绘技术装备, 2004(4): 43-45.
    [20]
    ISO. Optics and optical instruments – Field procedures for testing geodetic and surveying instruments – Part 4: Electro-optical distance meters (EDM measurements to reflectors): ISO 17123-4: 2012[S]. ISO, 2012.
    [21]
    侯建明. 对测距加乘常数检定方法的探讨[J]. 经纬天地, 2015(4): 34-39. doi: 10.3969/j.issn.1673-7563.2015.04.016
    [22]
    张炜, 张恺元. 测距仪加、乘常数求解方法的探讨[J]. 测绘信息与工程, 2002(6): 39-40. doi: 10.3969/j.issn.1007-3817.2002.06.016
    [23]
    周泽远, 孙仁心. 光电测距仪的乘常数及其定量分析方法[J]. 勘察科学技术, 1988(2): 49-54.
    [24]
    赵猛, 齐维君, 方爱平. Leica全站仪动态频率检测系统[C]. 中国测绘学会测绘仪器专业委员会, 2009.
    [25]
    刘胜林. 全站仪(测距仪)测尺频率的测量结果不确定度[J]. 计量技术, 2002(1): 44-45.
    [26]
    董刚, 王海芹. 全站仪精测频率分析与检测[J]. 青海国土经略, 2009(4): 32-33. doi: 10.3969/j.issn.1671-8704.2009.04.013
    [27]
    Pollinger F, Meyer T, Beyer J, et al. The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices[J]. Measurement Science and Technology, 2012, 23(9): 094018. doi: 10.1088/0957-0233/23/9/094018
    [28]
    李建双, 赫明钊. APMP光电测距仪国际比对方法研讨会成功举办[EB/OL]. [2021-12-10].https://www.nim.ac.cn/node/2266.
    [29]
    Rüeger J M. Electronic distance measurement: An introduction[M]. Springer Science & Business Media, 2012.
    [30]
    Cohen I, Huang Y, Chen J, et al. Pearson correlation coefficient[J]. Noise reduction in speech processing, 2009, 1: 1-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (158) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return