Volume 68 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LIU Yiling, LI Xiuli, HAO Jingkun. Traceability Discussion on China VI Standard Automobile Exhaust Emission Detection[J]. Metrology Science and Technology, 2024, 68(7): 55-62, 16. doi: 10.12338/j.issn.2096-9015.2024.0058
Citation: LIU Yiling, LI Xiuli, HAO Jingkun. Traceability Discussion on China VI Standard Automobile Exhaust Emission Detection[J]. Metrology Science and Technology, 2024, 68(7): 55-62, 16. doi: 10.12338/j.issn.2096-9015.2024.0058

Traceability Discussion on China VI Standard Automobile Exhaust Emission Detection

doi: 10.12338/j.issn.2096-9015.2024.0058
  • Received Date: 2024-02-29
  • Accepted Date: 2024-04-10
  • Rev Recd Date: 2024-04-24
  • Available Online: 2024-05-29
  • Publish Date: 2024-07-30
  • As the number of vehicles in China continues to increase, pollution from automobile exhaust has become increasingly severe. To control environmental pollution, China promulgated the "Air Pollution Prevention and Control Law of the People's Republic of China" as early as 1987. In 2013, the European Union released the Euro VI standard (EURO VI A-VI D). China, drawing on the Euro VI standard and considering its national conditions, issued GB 18352.6-2016 "Limits and Measurement Methods for Emissions from Light-Duty Vehicles (China 6)" (hereinafter referred to as the China VI standard) in 2016, which was implemented in phases starting from January 2020. This standard has set new requirements for the regulation and quality control traceability of automobile exhaust emissions. This article compares the differences in emission quality control requirements between the China V and China VI standards, and introduces the measurement methods for updated emission-limited pollutants in the China VI standard, including carbon monoxide (CO), nitrogen oxides (NOx), non-methane hydrocarbons (NMHC), nitrous oxide (N2O), particle number (PN), and particulate matter (PM). It also describes China's exhaust emission detection and traceability technology from the aspects of developing national gas reference materials, establishing measurement standards, and founding national automobile testing centers. The analysis shows that existing capabilities and technical levels cannot meet some emission detection requirements in the China VI standard. The article proposes areas in current traceability technology that need further optimization, such as the condensation particle counter in particle number (PN) measurement instruments. It points out that research and improvement should be accelerated on metrological indicators like particle concentration attenuation coefficient, volatile particle removal efficiency, and dilution ratio. Regarding the requirements for determining methyl chloroformate and benzo[a]pyrene pollutants specified in the Euro VI standard, China currently lacks corresponding reference materials and traceability systems. It is necessary to develop compliant reference materials and establish traceability standards to prepare for increasingly updated quality control requirements both domestically and internationally. The article also offers suggestions in response to the proposed European seventh stage emission standard (Euro 7).
  • loading
  • [1]
    戴忠喜. 论汽车尾气排放的环保[J]. 科学咨询, 2020(6): 128.
    [2]
    公安部. 2023年上半年全国机动车达4.26亿辆 驾驶人达5.13亿人 新能源汽车保有量达1620万辆[EB/OL]. https://www.mps.gov.cn/n2254314/n6409334/c9106375/content.html.
    [3]
    徐睿. 汽车尾气排放污染及控制处理措施探究[J]. 时代汽车, 2023(19): 16-18. doi: 10.3969/j.issn.1672-9668.2023.19.005
    [4]
    刘沂玲,张新,谌永华. 化学发光法测定混合气体中氮氧化物的影响因素[J]. 计量技术, 2014(1): 25-27.
    [5]
    王泽民. 汽车尾气排放检测技术与治理措施分析[J]. 时代汽车, 2023(11): 7-9. doi: 10.3969/j.issn.1672-9668.2023.11.002
    [6]
    马虎强. 简述生态环境建设中汽车尾气的治理[J]. 皮革制作与环保科技, 2023, 4(9): 183-185.
    [7]
    黄鹏超, 熊凤辉. 轻型汽车国五与国六阶段Ⅰ型试验排放标准对比分析[J]. 装备制造技术, 2020(3): 50-53. doi: 10.3969/j.issn.1672-545X.2020.03.012
    [8]
    生态环境部. 非道路柴油移动机械污染物排放控制技术要求(发布稿 ): HJ 1014-2020[S]. 北京: 中国标准出版社, 2020.
    [9]
    梁启发. 探讨汽车尾气排放检测[J]. 中国新技术新产品, 2012(3): 209. doi: 10.3969/j.issn.1673-9957.2012.03.202
    [10]
    余红燕, 刘国平. 汽车尾气排放的控制及治理[J]. 汽车实用技术, 2020, 45(22): 211-213.
    [11]
    李英民. 汽车尾气排放检测技术和治理措施探析[J]. 专用汽车, 2022(8): 83-85.
    [12]
    刘顺, 张慧丽. 一氧化碳非分散红外法性能指标确定方法的探讨[J]. 环境保护与循环经济, 2019, 39(2): 74-76. doi: 10.3969/j.issn.1674-1021.2019.02.019
    [13]
    郭安波. 非色散红外气体传感器 - 郭安波的文章 - 知乎[EB/OL]. https://zhuanlan.zhihu.com/p/270147333.
    [14]
    苏志庆. 城市汽车尾气排放污染及防治[J]. 山西化工, 2020, 40(3): 204-205,208.
    [15]
    徐慧梁. 化学发光法氮氧化物分析仪关键技术研究[D]. 广州: 华南师范大学, 2005.
    [16]
    吴晨帆. 化学发光法氮氧化物分析仪示值误差测量不确定度评定[J]. 计量与测试技术, 2016, 43(7): 88-89.
    [17]
    张猛, 彭志敏, 杨乾锁, 等. 基于化学发光法的高纯气体中ppb量级NOx浓度测量[J]. 物理学报, 2022, 71(13): 368-376.
    [18]
    杨杨, 李明爽, 李博. 氧化亚氮的概述及其分析方法研究进展[J]. 山东化工, 2022, 51(21): 107-109,112. doi: 10.3969/j.issn.1008-021X.2022.21.032
    [19]
    郑欣昱, 尚曼霞, 苗苗, 等. 燃煤锅炉氧化亚氮排放现状与研究分析[J]. 热力发电, 2023, 52(9): 21-28.
    [20]
    孔凡耿. 气相色谱电子捕获技术分析检测葡萄酒及软木塞中TCA的研究进展[J]. 现代食品, 2017(2): 29-30.
    [21]
    张奎, 林敏. 天然气气相色谱仪检定装置的建立[J]. 化学分析计量, 2022, 31(4): 83-87. doi: 10.3969/j.issn.1008-6145.2022.04.017
    [22]
    张洲. 中国大气非甲烷碳氢化合物时空分布特征初步研究[D]. 北京: 中国科学院大学, 2016.
    [23]
    王斌. 非甲烷碳氢化合物光化学初始浓度的计算与应用[D]. 北京: 北京大学, 2010.
    [24]
    童梦雪, 李勤勤, 李源遽, 等. 深圳市商业厨房排放非甲烷碳氢化合物污染特征研究[J]. 环境科学学报, 2021, 41(11): 4406-4414.
    [25]
    张俊刚. 北京及其周边地区大气中非甲烷碳氢化合物(NMHC)的来源和反应活性研究[D]. 北京: 中国科学院大气物理研究所, 2009.
    [26]
    李倩倩. 潮州市大气中挥发性非甲烷碳氢化合物的特征及来源分析[D]. 广州: 中山大学, 2010.
    [27]
    陶双成, 邓顺熙, 郝艳召, 等. 关中城市群道路移动源气态污染物排放特征[J]. 中国环境科学, 2019, 39(2): 542-553. doi: 10.3969/j.issn.1000-6923.2019.02.012
    [28]
    修光利, 吴应, 王芳芳, 等. 我国固定源挥发性有机物污染管控的现状与挑战[J]. 环境科学研究, 2020, 33(9): 2048-2060.
    [29]
    王慧杰. 基于GC-MS/FID的环境空气挥发性有机物连续监测系统的比对与应用研究[D]. 保定: 河北大学, 2021.
    [30]
    魏安然. 基于STM32的氢火焰离子化检测器研究与设计[D]. 青岛: 山东科技大学, 2018.
    [31]
    吴雨翠. 氢火焰离子化检测器电子线路设计[D]. 西安: 西安电子科技大学, 2015.
    [32]
    高少华, 邹兵, 崔积山, 等. 基于氢火焰离子化检测仪响应因子的设备泄漏排放核算[J]. 化工环保, 2017, 37(6): 707-712. doi: 10.3969/j.issn.1006-1878.2017.06.020
    [33]
    林健. 汽车尾气污染物检测方法的应用研究[J]. 建材与装饰, 2019(21): 56-57. doi: 10.3969/j.issn.1673-0038.2019.21.042
    [34]
    国家质量监督检验检疫总局. 凝结核粒子计数器校准规范: JJF 1562-2016[S]. 北京: 中国标准出版社, 2016.
    [35]
    环境保护部. 环境空气PM10和PM2.5的测定 重量法: HJ 618-2011[S]. 北京: 中国标准出版社, 2011.
    [36]
    生态环境部. 环境空气中颗粒物(PM10和PM2.5)β射线法自动监测技术指南: HJ 1100-2020[S]. 北京: 中国标准出版社, 2020.
    [37]
    环境保护部. 轻型汽车污染物排放限值及测量方法(中国第五阶段): GB 18352.5-2013[S]. 北京: 中国标准出版社, 2013.
    [38]
    环境保护部. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB 18352.6-2016[S]. 北京: 中国标准出版社, 2016.
    [39]
    国家市场监督管理总局. 气溶胶粒径谱仪校准规范: JJF 1864-2020[S]. 北京: 中国标准出版社, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (160) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return