Volume 68 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
LI Fan, ZHANG Hui, WANG Pingquan, ZHANG Yanan. Present Status of Monoenergetic Neutron Production Technology and Reference Radiation Fields[J]. Metrology Science and Technology, 2024, 68(9): 20-31. doi: 10.12338/j.issn.2096-9015.2024.0059
Citation: LI Fan, ZHANG Hui, WANG Pingquan, ZHANG Yanan. Present Status of Monoenergetic Neutron Production Technology and Reference Radiation Fields[J]. Metrology Science and Technology, 2024, 68(9): 20-31. doi: 10.12338/j.issn.2096-9015.2024.0059

Present Status of Monoenergetic Neutron Production Technology and Reference Radiation Fields

doi: 10.12338/j.issn.2096-9015.2024.0059
  • Received Date: 2024-02-29
  • Accepted Date: 2024-03-27
  • Rev Recd Date: 2024-03-29
  • Available Online: 2024-07-09
  • Publish Date: 2024-09-18
  • Neutrons are essential tools for studying nuclear structure, nuclear reaction laws, particle physics, astrophysics, and material structure. They are widely applied in fields such as energy, materials, life sciences, medical health, radiation protection, and semiconductors. Monoenergetic neutrons, in particular, play an increasingly crucial role in ionizing radiation metrology and nuclear energy applications. Consequently, national metrology institutes and nuclear research facilities worldwide have established monoenergetic neutron reference radiation fields. The National Institute of Metrology, China (NIM) plans to construct such a facility within the next 3 to 5 years to enhance China's neutron metrology system, conduct fundamental neutron physics research, and meet the diverse needs for monoenergetic neutrons across various sectors. Based on the latest ISO 8529-1:2021 standard and in response to NIM's requirements for building a monoenergetic neutron reference radiation field, this paper reviews and calculates parameters for the five most common nuclear reactions used in monoenergetic neutron production. These parameters include neutron energy, neutron yield, neutron angular distribution, and accompanying γ-ray background. The paper also summarizes the current status and characteristics of existing monoenergetic neutron reference radiation fields, introduces the primary equipment commonly used in these fields, and provides important parameters for the proposed monoenergetic neutron reference radiation field at NIM.
  • loading
  • [1]
    KARL-HEINRICH BECKURTS, KARL WIRTZ. Neutron Physics[M]. 1st ed. Springer, 1964.
    [2]
    MARION J B, FOWLER J L, MARSHAK R E, et al. Fast Neutron Physics: Part 1, Techniques[J]. Physics Today, 1960, 13(8): 36-38.
    [3]
    REUSS P. Neutron Physics[M]. EDP Sciences, 2008.
    [4]
    丁大钊, 叶春堂, 赵志祥. 中子物理学——原理、方法与应用[M]. 第2 版. 北京: 原子能出版社, 2005.
    [5]
    卢希庭. 原子核物理[M]. 北京:原子能出版社, 2000.
    [6]
    NOLTE R, THOMAS D J. Monoenergetic fast neutron reference fields: I. Neutron production[J]. Metrologia, 2011, 48(6): S263. doi: 10.1088/0026-1394/48/6/S04
    [7]
    NOLTE R, THOMAS D J. Monoenergetic fast neutron reference fields: II. Field characterization[J]. Metrologia, 2011, 48(6): S274. doi: 10.1088/0026-1394/48/6/S05
    [8]
    THOMAS D J, NOLTE R, GRESSIER V. What is neutron metrology and why is it needed?[J]. Metrologia, 2011, 48(6): S225. doi: 10.1088/0026-1394/48/6/S01
    [9]
    YANG J K, WANG P Q, REN Z G, et al. Comparison of neutron energy spectrum unfolding methods and evaluation of rationality criteria[J]. Nuclear Science and Techniques, 2022, 33(12): 164. doi: 10.1007/s41365-022-01139-2
    [10]
    陈军, 王志强, 刘毅娜, 等. 0.144~1.2 MeV单能中子参考辐射场的建立[J]. 原子能科学技术, 2007, 41(3): 262-267.
    [11]
    GRESSIER V, ASSELINEAU B, GUERRE-CHALEY J F, et al. AMANDE ACCELERATOR PERFORMANCES[C]. Proceedings of International Workshop on Fast Neutron Detectors and Applications — PoS(FNDA2006), 2007.
    [12]
    GRESSIER V, GUERRE-CHALEY J F, LACOSTE V, et al. AMANDE: a new facility for monoenergetic neutron fields production between 2 keV and 20 MeV[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 49-52. doi: 10.1093/rpd/nch185
    [13]
    MATSUMOTO T, HARANO H, SHIMOYAMA T, et al. Characterisation of kilo electron volt neutron fluence standard with the 45Sc(p, n)45Ti reaction at NMIJ[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 155-158. doi: 10.1093/rpd/ncm033
    [14]
    林敏, 叶宏生, 夏文, 等. CIAE电离辐射计量技术发展回顾[J]. Atomic Energy Science and Technology, 2020, 54: 322-341.
    [15]
    LAMIRAND V, GRESSIER V, MARTIN A, et al. Comparison of nuclear reactions for the production of monoenergetic neutron fields with energies below 100 keV[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1112-1115.
    [16]
    TANIMURA Y, YOSHIZAWA M, SAEGUSA J, et al. Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 85-89. doi: 10.1093/rpd/nch197
    [17]
    TANIMURA Y, SAEGUSA J, SHIKAZE Y, et al. Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 8-12. doi: 10.1093/rpd/ncm004
    [18]
    COGNET M A, GRESSIER V. Development of a measurement reference standard for neutron energies between 1 MeV and 20 MeV using time of flight method at the AMANDE facility[J]. Metrologia, 2010, 47(4): 377. doi: 10.1088/0026-1394/47/4/004
    [19]
    A M B , B M T , A T I , et al. Development of monoenergetic neutron calibration fields between 8 keV and 15 MeV - ScienceDirect[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 376(1): 115-123.
    [20]
    SHIMOYAMA T, HARANO H, MATSUMOTO T, et al. Development of the fast neutron standard using a Be(α, n) reaction at the National Metrology Institute of Japan[J]. Radiation Protection Dosimetry, 2007, 126(1-4): 130-133. doi: 10.1093/rpd/ncm028
    [21]
    KIM G dong, WOO H J, HONG W, et al. Fast neutron facility of KIGAM[J]. Journal of the Korean Physical Society, 2007, 51: 24-29. doi: 10.3938/jkps.51.24
    [22]
    李玮, 陈军, 李春娟, 等. keV 能区单能中子参考辐射场核反应靶设计[J]. 原子能科学技术, 2013(10): 1670-1673.
    [23]
    HARANO H, MATSUMOTO T, TANIMURA Y, et al. Monoenergetic and quasi-monoenergetic neutron reference fields in Japan[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1076-1082.
    [24]
    COSACK M, LESIECKI H, HUNT J B. Monoenergetic neutrons from the 45Sc(p, n)45Ti reaction[R/OL]. http://inis.iaea.org/search/search.aspx?orig_q=RN:18075601.
    [25]
    COSACK M, LESIECKI H, HUNT J B. Monoenergetic neutrons of energies from 05 kev to 40 kev via the reaction 45Sc(p, n)45Ti: 92-825-5617-4[R/OL]. http://inis.iaea.org/search/search.aspx?orig_q=RN:18019329.
    [26]
    NOLTE R , Böttger R , Giesen U , et al. Neutron Beams and Neutron Metrology at the PTB Ion Accelerator Facility PIAF and at the iThemba Labs Neutron Beam Facility[Z]. 2014.
    [27]
    GRESSIER V, PELCOT G, POCHAT J L, et al. New IRSN facilities for neutron production[J]. Proceedings of the tenth Symposium on Radiation Measurements and Applications, 2003, 505(1): 370-373.
    [28]
    BUNCE M, THOMAS D, ROBERTS N, et al. Plans for neutron metrology at NPL[J]. Journal of Physics: Conference Series, 2020, 1643(1): 012201. doi: 10.1088/1742-6596/1643/1/012201
    [29]
    DROSG M, SCHWERER O. Production of monoenergetic neutrons between 0.1 and 23 MeV Neutron energies and cross-sections[M]. International Atomic Energy Agency (IAEA), 1987.
    [30]
    GULDBAKKE S, Dietz E, Kluge H, et al. PTB neutron fields for the calibration of neutron sensitive devices[Z]. 1994.
    [31]
    MISHRA G, THOMAS R G, KUMAR A, et al. Schemes for producing multi-energy fast neutrons using a low-energy ion accelerator[J]. Journal of Instrumentation, 2021, 16(9): T09003. doi: 10.1088/1748-0221/16/09/T09003
    [32]
    LAMIRAND V, THOMAS D J, GRESSIER V, et al. Study of scandium targets for production of monoenergetic neutron fields with energies below 100 keV[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1116-1119.
    [33]
    ROGERS D W O. The 45Sc(p, n) reaction as a source of monoenergetic 10–50 keV neutrons[J]. Nuclear Instruments and Methods, 1977, 142(3): 475-478. doi: 10.1016/0029-554X(77)90685-1
    [34]
    BREDE H J, COSACK M, DIETZE G, et al. The Braunschweig accelerator facility for fast neutron research: 1: Building design and accelerators[J]. Nuclear Instruments and Methods, 1980, 169(3): 349-358. doi: 10.1016/0029-554X(80)90928-3
    [35]
    GRESSIER V. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields[J]. Radiation Protection Dosimetry, 2014, 161(1-4): 27-36. doi: 10.1093/rpd/nct328
    [36]
    LACOSTE V. Review of radiation sources, calibration facilities and simulated workplace fields[J]. PROCEEDINGS OF THE 11TH SYMPOSIUM ON NEUTRON AND ION DOSIMETRY, 2010, 45(10): 1083-1089.
    [37]
    CHEN J, WANG Z, RONG C, et al. International key comparison of neutron fluence measurements in mono-energetic neutron fields: CCRI(III)-K10[J]. Metrologia, 2007, 44(1A): 06005. doi: 10.1088/0026-1394/44/1A/06005
    [38]
    NOLTE R, ALLIE M S, BÖTTGER R, et al. Quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV[J]. Radiation Protection Dosimetry, 2004, 110(1-4): 97-102. doi: 10.1093/rpd/nch195
    [39]
    JONES D T L. Monoenergetic neutron sources below 100MeV[J]. 8th International Symposium on Radiation Physics - ISRP8, 2001, 61(3): 469-472.
    [40]
    FOWLER J L, BROLLEY J E. Monoenergetic Neutron Techniques in the 10- to 30-Mev Range[J]. Rev. Mod. Phys., 1956, 28(2): 103-134. doi: 10.1103/RevModPhys.28.103
    [41]
    ISO. Reference neutron radiations — Part 1: Characteristics and methods of production: ISO 8529-1: 2001(E)[S]. ISO, 2001.
    [42]
    ISO. Neutron reference radiations fields — Part 1: Characteristics and methods of production: ISO 8529-1: 2021(E)[S]. ISO, 2021.
    [43]
    NONE. Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations. International evaluation Co-operation, Volume 26[Z]. 2008.
    [44]
    LESIECKI H, COSACK M, SIEBERT B R L. Target scattering in the production of monoenergetic neutrons at accelerators[J]. International Atomic Energy Agency (IAEA), 1987: 274-278.
    [45]
    KLEIN H, BREDE H J, SIEBERT B R L. Energy and angle straggling effects in a D(d, n) 3He neutron source using a gas target[J]. Nuclear Instruments and Methods in Physics Research, 1982, 193(3): 635-644. doi: 10.1016/0029-554X(82)90262-2
    [46]
    NEUMANN S, Guldbakke S, Matzke M, et al. Photon spectrometry in monoenergetic neutron fields[Z]. 2001.
    [47]
    LANGNER F, Loeb S, Nolte R, et al. Photon contribution to ambient dose equivalent H*(10) in the wide-spectrum neutron reference fields of the IRSN [Z]. 2007.
    [48]
    DROSG M. DROSG-2000: Neutron source reactions. Data files with computer codes for 56 monoenergetic neutron source reactions[Z]. 2000.
    [49]
    L ̈ OVESTAM G. EnergySet[EB/OL]. 2009. http://irmm.jrc.ec.europa.eu/about IRMM/laboratories/ Pages/the van de graaff laboratory.aspx.
    [50]
    EVERT B, GOERAN L N E. NeuSDesc-Neutron Source Description Software Manual[EB/OL]. 2009. https://api.semanticscholar.org/CorpusID:65220911.
    [51]
    SCHLEGEL D, GULDBAKKE S. Why Do We Need TARGET?[C]. Berlin : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Application, 2001.
    [52]
    LISKIEN H, PAULSEN A. Neutron production cross sections and energies for the reactions T(p, n)3He, D(d, n)3He, and T(d, n)4He[J]. Atomic Data and Nuclear Data Tables, 1973, 11: 569-619. doi: 10.1016/S0092-640X(73)80081-6
    [53]
    LISKIEN H, PAULSEN A. Neutron production cross sections and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*[J]. At. Data Nucl. Data Tables, 1975, 15(1): 57-84. doi: 10.1016/0092-640X(75)90004-2
    [54]
    KLEIN H, BARRENSCHEEN H J, DIETZE G, et al. The Braunschweig accelerator facility for fast neutron research II. Data acquisition and analysis[J]. Nuclear Instruments and Methods, 1980, 169(3): 359-367. doi: 10.1016/0029-554X(80)90929-5
    [55]
    AXTON E J , Robertson, J C, RYVES T B. Proposed Neutron Flux-Density Standards at the National Physical Laboratory[Z]. 1967.
    [56]
    BÖTTGER R, GULDBAKKE S, KLEIN H, et al. Problems associated with the production of monoenergetic neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 282(1): 358-367.
    [57]
    MARION J B, YOUNG F C. NUCLEAR REACTION ANALYSIS. GRAPHS AND TABLES [EB/OL]. 1968. https://www.osti.gov/biblio/4835829.
    [58]
    ROBERTS N J, TAGZIRIA H, THOMAS D J. Determination of the effective centres of the NPL long counters. [R/OL]. (2004-11). http://eprintspublications.npl.co.uk/3130/.
    [59]
    HUNT J B. The Calibration and Use of Long Counters for the Accurate Measurement of Neutron Flux Density[M]. National Physical Laboratory, 1976.
    [60]
    EISENHAUER C M, HUNT J B, SCHWARTZ R B. Calibration Techniques for Neutron Personal Dosimetry[J]. Radiation Protection Dosimetry, 1985, 10: 43-57. doi: 10.1093/oxfordjournals.rpd.a079410
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (205) PDF downloads(645) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return