Volume 68 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
ZHENG Muhan, LI Ming, GUO Su. Progress in Peptide Purity Measurement Methods and International Comparisons[J]. Metrology Science and Technology, 2024, 68(6): 33-39, 48. doi: 10.12338/j.issn.2096-9015.2024.0060
Citation: ZHENG Muhan, LI Ming, GUO Su. Progress in Peptide Purity Measurement Methods and International Comparisons[J]. Metrology Science and Technology, 2024, 68(6): 33-39, 48. doi: 10.12338/j.issn.2096-9015.2024.0060

Progress in Peptide Purity Measurement Methods and International Comparisons

doi: 10.12338/j.issn.2096-9015.2024.0060
  • Received Date: 2024-02-29
  • Accepted Date: 2024-03-25
  • Rev Recd Date: 2024-03-27
  • Available Online: 2024-06-13
  • Publish Date: 2024-06-30
  • Peptides, amino acid condensation products, have been widely used in various fields such as disease diagnosis, prevention and treatment, nutrition, cosmetics, and personal care. The rapid development of peptide-associated industries has put forward metrological traceability requirements for peptide measurement activities. Peptide purity measurement is an important technical foundation for achieving SI traceability in peptide measurement activities. The primary methods for measuring peptide purity include mass balance, amino acid analysis, quantitative nuclear magnetic resonance (qNMR), and elemental analysis. To achieve accuracy, consistency, and equivalence in peptide purity measurement results, the Protein Analysis Working Group (PAWG) of the Consultative Committee for Amount of Substance (CCQM) has planned a series of international comparisons on purity assessment for peptides. Currently, the International Bureau of Weights and Measures (BIPM), in cooperation with the National Institute of Metrology, China, and the Health Sciences Authority, Singapore, has organized international metrological comparisons on human C-peptide, oxytocin, and glycated hexapeptide, significantly improving the capabilities of participating laboratories from various countries. This review provides detailed principles, uncertainty evaluations, advantages, and disadvantages of peptide purity measurement methods and carefully introduces the international comparisons on peptide purity measurement. The development trends of peptide purity measurement are discussed, aiming to promote scientific and technological research on peptide metrology.
  • loading
  • [1]
    夏黎黎, 李明. 肽的检测方法及化妆品中肽检测的计量需求[J]. 化学分析计量, 2017, 26(5): 119-122.
    [2]
    JOSEPHS R D, STOPPACHER N, DAIREAUX A, et al. State-of-the-art and trends for the SI traceable value assignment of the purity of peptides using the model compound angiotensin I[J]. Trends Anal Chem, 2018, 101: 108-119. doi: 10.1016/j.trac.2017.09.026
    [3]
    JOSEPHS R D, STOPPACHER N, WESTWOOD S, et al. Concept paper on SI value assignment of purity - Model for the classification of peptide/protein purity determinations[J]. J Chem Metrol, 2017, 11(1): 1-8. doi: 10.25135/jcm.1.17.02.030
    [4]
    李明, 李红梅, 李孟婉. C肽的国际比对及C肽纯度标准物质的研制[J]. 计量技术, 2020, 64(5): 112-114.
    [5]
    JOSEPHS R D, LI M, SONG D, et al. Key comparison study on peptide purity-synthetic human C-peptide[J]. Metrologia, 2017, 54(1A): 08007. doi: 10.1088/0026-1394/54/1A/08007
    [6]
    JOSEPHS R D, LI M, SONG D, et al. Pilot study on peptide purity-synthetic human C-peptide[J]. Metrologia, 2017, 54(1A): 080011.
    [7]
    李明, 郑书文. 缩宫素纯度测量的国际比对及国际互认[J]. 中国计量, 2023, 1: 63-65.
    [8]
    JOSEPHS R D, LI M, DAIREAUX A, et al. Key comparison study on peptide purity - synthetic oxytocin[J]. Metrologia, 2020, 57(1A): 08014. doi: 10.1088/0026-1394/57/1A/08014
    [9]
    JOSEPHS R D, LI M, DAIREAUX A, et al. Pilot study on peptide purity - synthetic oxytocin[J]. Metrologia, 2020, 57(1A): 08016. doi: 10.1088/0026-1394/57/1A/08016
    [10]
    JOSEPHS R D, LIU Q, MARTOS G, et al. Key Comparison Study on Peptide Purity - Hexapeptide of HbA0[J]. Metrologia, 2022, 59(1A): 08013. doi: 10.1088/0026-1394/59/1A/08013
    [11]
    JOSEPHS R D, LIU Q, MARTOS G, et al. Pilot study on Peptide Purity - Hexapeptide of HbA0[J]. Metrologia, 2022, 59(1A): 08014. doi: 10.1088/0026-1394/59/1A/08014
    [12]
    JOSEPHS R D, LIU Q, MARTOS G, et al. Key comparison study peptide purity - glycated hexapeptide of HbA1c[J]. Metrologia 2022, 59(1A): 08006.
    [13]
    JOSEPHS R D, LIU Q, MARTOS G, et al. Pilot study on peptide purity - glycated hexapeptide of HbA1c[J]. Metrologia 2022, 59(1A): 08007.
    [14]
    WESTWOOD S, CHOTEAU T, DAIREAUX A, et al. Mass Balance Method for the SI Value Assignment of the Purity of Organic Compounds[J]. Anal Chem, 2013, 85(6): 3118-3126. doi: 10.1021/ac303329k
    [15]
    WANG S, WU P, LI M, et al. Mass balance method for SI-traceable purity assignment of synthetic oxytocin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 207: 114401.
    [16]
    陈松辉, 李明, 李红梅, 等, 合成多肽药物中相关结构杂质分析综述[J]. 分析化学进展, 2016, 6(3): 43-50.
    [17]
    STOPPACHER N, JOSEPHS R D, DAIREAUX A, et al. Impurity identification and determination for the peptide hormone angiotensin I by liquid chromatography–high resolution tandem mass spectrometry and the metrological impact on value assignments by amino acid analysis[J]. Anal Bioanal Chem, 2013, 405: 8039-8051. doi: 10.1007/s00216-013-6953-7
    [18]
    STOCKS B B, THIBEAULT M P, MEIJA J, et al. Assessing MS-based quantitation strategies for low-level impurities in peptide reference materials: application to angiotensin II[J]. Anal Bioanal Chem, 2018, 410(26): 6963-6972. doi: 10.1007/s00216-018-1302-5
    [19]
    LI M, JOSEPHS R D, DAIREAUX A, et al. Impurity determination for human C-peptide by liquid chromatography–high resolution tandem mass spectrometry[J]. Anal Bioanal Chem, 2018, 410(20): 5059-5070. doi: 10.1007/s00216-018-1155-y
    [20]
    LI M, JOSEPHS R D, CHOTEAU T, et al. Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography–high-resolution mass spectrometry[J]. Anal Bioanal Chem, 2021, 413(7): 1861-1870. doi: 10.1007/s00216-021-03154-5
    [21]
    WU P, LI M, KAN Y, et al. Impurities identification and quantification for calcitonin salmon by liquid chromatography-high resolution mass spectrometry[J]. J Pharm Biomed Anal, 2020, 186: 113271. doi: 10.1016/j.jpba.2020.113271
    [22]
    WU P, YE S, LI M, et al. Impurities identification and quantification for arginine vasopressin by liquid chromatography-high resolution mass spectrometry[J]. Rapid Commun Mass Spectrom, 2020, 34(12): e8799. doi: 10.1002/rcm.8799
    [23]
    CHENG Y, WU P, KAN Y, et al. Identification and determination of structurally related peptide impurities in thymalfasin by liquid chromatography-high-resolution mass spectrometry[J]. Anal Bioanal Chem, 2022, 414(28): 8035-8045. doi: 10.1007/s00216-022-04336-5
    [24]
    ELLISON S L R, WILLIAMS A. Quantifying Uncertainty in Analytical Measurement , 3rd Edition, 2012 [EB/OL]. [2024-04-07].https://www.eurachem.org/index.php/publications/guides/quam.
    [25]
    PRITCHARD C, TORMA F A, HOPLEY C, et al. Investigating microwave hydrolysis for the traceable quantification of peptide standards using gas chromatography–mass spectrometry[J]. Anal Bioanal, 2011, 412: 40-46.
    [26]
    ZHANG W, HUANG T, LI H, et al. Purity Measurement of Human C-Peptide by High Performance Liquid Chromatography and Quantitative Nuclear Magnetic Resonance[J]. Int J Pept Res Ther, 2018, 24: 391-396. doi: 10.1007/s10989-017-9620-6
    [27]
    ZHANG W, MARTOS G, YAMAZAKI T, et al. [ISRD-08] qNMR Internal Standard Reference Data- Benzoic Acid , 2023 [EB/OL]. [2024-04-07].https://www.bipm.org/en/organic-analysis/qnmr.
    [28]
    FENG L, HUO Z, XIONG J, et al. Certification of Amyloid-Beta (Aβ) Certified Reference Materials by Amino Acid-Based Isotope Dilution High-Performance Liquid Chromatography Mass Spectrometry and Sulfur-Based High-Performance Liquid Chromatography Isotope Dilution Inductively Coupled Plasma Mass Spectrometry[J]. Anal Chem, 2020, 92(19): 13229-13237. doi: 10.1021/acs.analchem.0c02381
    [29]
    李明, 张伟. 基于有机元素分析的多肽纯度测量技术[J]. 计量科学与技术, 2022, 66(7): 18-21.
    [30]
    JOSEPHS R D, MARTOS G, LI M, et al. Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment – A review[J]. Metrologia, 2019, 56(4): 044006. doi: 10.1088/1681-7575/ab27e5
    [31]
    YU C, LI M, CUI Z, et al. The Effect of different disulfide connectivity on the structure of hepcidin: investigated by Molecular Dynamics Simulation[J]. Chem Phys, 2020, 535: 110745. doi: 10.1016/j.chemphys.2020.110745
    [32]
    BROS P, JOSEPHS R D, STOPPACHER N, et al. Impurity determination for hepcidin by liquid chromatography-high resolution and ion mobility mass spectrometry for the value assignment of candidate primary calibrators[J]. Anal Bioanal Chem, 2017, 409: 2559-2567. doi: 10.1007/s00216-017-0202-4
    [33]
    肖鹏, 徐蓓宋, 宋德伟. 心衰临床诊断标志物-利钠肽标准物质研发的意义[J]. 计量技术, 2018, 62(9): 3.
    [34]
    彭子娟, 薄梦, 吴雪, 等. 食品甜味剂的检测及其标准物质研究现状[J]. 计量科学与技术, 2023, 67(9): 40-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return