Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
MENG Haifeng, ZHANG Junchao, LIU Wende, XU Nan, WANG Meng, ZHANG Bifeng, CAI Chuan, MAN Shuai, DENG Wenhao, XIONG Limin, GAN Haiyong. Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review[J]. Metrology Science and Technology, 2024, 68(5): 92-99, 126. doi: 10.12338/j.issn.2096-9015.2024.0062
Citation: MENG Haifeng, ZHANG Junchao, LIU Wende, XU Nan, WANG Meng, ZHANG Bifeng, CAI Chuan, MAN Shuai, DENG Wenhao, XIONG Limin, GAN Haiyong. Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review[J]. Metrology Science and Technology, 2024, 68(5): 92-99, 126. doi: 10.12338/j.issn.2096-9015.2024.0062

Research on Photovoltaic Metrology at the National Institute of Metrology, China: A Review

doi: 10.12338/j.issn.2096-9015.2024.0062
  • Received Date: 2024-02-29
  • Accepted Date: 2024-03-19
  • Rev Recd Date: 2024-03-20
  • Available Online: 2024-05-16
  • Publish Date: 2024-05-18
  • Photovoltaic (PV) power generation is one of the most promising renewable and clean energy technologies, and China has become the world's largest producer, user, and exporter of photovoltaic products. Accurate and reliable measurement of the photoelectric performance parameters of PV products is critical for their scientific research and industrial development. Based on the traceability and dissemination system established by the National Institute of Metrology, China (NIM), China's photovoltaic industry has achieved effective traceability and dissemination of key quantities. This article reviews the research and establishment of the traceability and dissemination chain for China's photovoltaic industry, from the highest relevant standard, the cryogenic radiometer, to terminal PV products, and provides prospects for the next stage of research.
  • loading
  • [1]
    中国光伏行业协会. 2022-2023年中国光伏产业发展路线图[EB/OL]. http://chinapv.org.cn/road_map/1137.html.
    [2]
    S. Winter, T. Wittchen, J. Metzdorf. Primary Reference Cell Calibration At The PTB Based on an Improved DSR Facility, [C]. Proc. 16th European Photovoltaic Solar Energy Conference, 2000.
    [3]
    S. Winter, T. Fey, I. Kröger, et al. Design, realization and uncertainty analysis of a laser-based primary calibration facility for solar cells at PTB[J]. Measurement, 2014, 51: 457-463. doi: 10.1016/j.measurement.2013.12.001
    [4]
    孟海凤, 王萌, 戴源廷, 等. 地铁弓网燃弧特征光谱原位测试及研究[J]. 计量科学与技术, 2023, 67(9): 56-60,48. doi: 10.12338/j.issn.2096-9015.2023.0228
    [5]
    NIST. NET-ZERO ENERGY RESIDENTIAL TEST FACILITY (NZERTF) [EB/OL].https://www.nist.gov/el/net-zero-energy-residential-test-facility.
    [6]
    ISO. General requirements for the competence of testing and calibration laboratories : ISO/IEC 17025 [S]. ISO, 2017.
    [7]
    IEC. Photovoltaic devices - Part 1: Measurement of photovoltaic current-voltage characteristics : IEC 60904-1 [S]. Geneva: International Electrotechnical Commission, 2020.
    [8]
    IEC. Photovoltaic devices - Part 2: Requirements for photovoltaic reference devices : IEC 60904-2 [S]. Geneva: International Electrotechnical Commission, 2023.
    [9]
    IEC. Photovoltaic devices – Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data : IEC 60904-3 [S]. Geneva: International Electrotechnical Commission, 2019.
    [10]
    IEC. Photovoltaic devices - Part 4: Reference solar devices - Procedures for establishing calibration traceability : IEC 60904-4 [S]. Geneva: International Electrotechnical Commission, 2019.
    [11]
    IEC. Photovoltaic Devices: Part 9. Classification of solar simulator characteristic : IEC 60904-9 [S]. Geneva: International Electrotechnical Commission, 2020.
    [12]
    Haifeng Meng, Junchao Zhang, Wende Liu, et al. Metrology boosts the quality of China’s photovoltaic products[J]. OIML Bulletin, 2023, 3: 27-33.
    [13]
    徐楠, 俞兵, 史学舜, 等, 低温辐射计计量比对研究[J]. 计量学报, 2022, 43(5): 578-582.
    [14]
    Haifeng Meng, Limin Xiong, Nan Xui, et al. Calibration of photo-detector’s absolute spectral responsivity in the wavelength range 300 nm to 1000 nm[J]. Proc. of SPIE, 2018, 10621: 106211T-1.
    [15]
    Yingwei He, Linmin Xiong, Junchao Zhang, et al. Primary Calibration of Solar Cells based on DSR Method at the National Institute of Metrology of China[C]. Proc. of SPIE, 2015, 9623: 96230S-1.
    [16]
    张俊超, 熊利民, 孟海凤, 等. 标准太阳电池标定值计量方法研究[J]. 计量学报, 2017, 38(2): 171-174. doi: 10.3969/j.issn.1000-1158.2017.02.10
    [17]
    S Winter Kröger, D Friedrich, S Morozova, et al. Calibration of reference solar cells at standard test conditions[J]. Metrologia, 2021, 58: 02001. doi: 10.1088/0026-1394/58/1A/02001
    [18]
    Meng Haifeng, Xiong Limin, He Yingwei, et al. Calibration of Solar Cells’ Photoelectric Properties and Related Uncertainty Analysis[J]. Proc. of SPIE, 2014, 9233: 92331T-1.
    [19]
    孟海凤, 熊利民, 张俊超, 等. 太阳电池光电性能参数校准方法研究[J]. 计量学报, 2017, 38(5): 567-570. doi: 10.3969/j.issn.1000-1158.2017.05.10
    [20]
    Junchao Zhang, Limin Xiong, Haifeng Meng, et al. Study on photoelectric parameter measurement method of high capacitance solar cell[J]. Proc. of SPIE, 2018, 10621: 1062121-1.
    [21]
    张俊超, 熊利民, 孟海凤. 太阳能电池光电性能测试的辐照度补偿方法[P]. ZL 201910843722.6.
    [22]
    Meng H , Xiong L , Zhang J , et al. Accurate Measurement of New Type Non-silicon Solar Cells' Photoelectric Conversion Efficiency[J]. Journal of Physics Conference Series, 2018, 972: 012017.
    [23]
    Long Ye, Chengyue Zhou, Haifeng Meng, et al. Toward Reliable and Accurate Evaluation of Polymer Solar Cells Based on Low Band Gap Polymers[J]. J. Mater. Chem. C, 2015, 3: 564. doi: 10.1039/C4TC02449D
    [24]
    孟海凤, 张俊超, 叶冯俊, 等. 新型太阳电池光电转换效率测量技术研究进展[J]. 影像科学与光化学, 2016, 34: 389-401. doi: 10.7517/j.issn.1674-0475.2016.05.389
    [25]
    Yong Cui, Ling Hong, Tao Zhang, et al. Accurate photovoltaic measurement of organic cells for indoor applications[J]. Joule, 2021, 5(5): 1016-1023. doi: 10.1016/j.joule.2021.03.029
    [26]
    Ligang Wang, Huanping Zhou, Junnan Hu, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363: 265-270. doi: 10.1126/science.aau5701
    [27]
    Yong Wang, M. Ibrahim Dar, Luis K. Ono, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%[J]. Science, 2019, 365: 591-595. doi: 10.1126/science.aav8680
    [28]
    Wu Shengfan, Li Zhen, Li Mu-Qing, et al. D metal–organic framework for stable perovskite solar cells with minimized lead leakage[J]. Nature Nanotechnology, 2020, 15: 934-940. doi: 10.1038/s41565-020-0765-7
    [29]
    Hui Ren, Shidong Yu , Lingfeng Chao, et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 2020, 14: 154-163. doi: 10.1038/s41566-019-0572-6
    [30]
    Siyang Wang, Liguo Tan, Junjie Zhou, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells[J]. Joule, 2022, 6: 1344-1356. doi: 10.1016/j.joule.2022.05.002
    [31]
    Zijian Huang, Yang Bai, Xudan Huang, et al, Anion-π interactions suppress phase impurities in FAPbI3 solar cells[J]. Nature, 2023, 7987: 623.
    [32]
    Meng Haifeng, Xiong Limin, He Yingwei, et al. Research on integrated system for solar simulator performance calibration according to IEC 60904-9[J]. Proc. of SPIE, 2011, 8201: 82012L-1. doi: 10.1117/12.916693
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (256) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return