Volume 68 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
NIE Lu, LI Xiangjun, CUI Xiaohai, WANG Zihao, ZHAO Yan. Study on Calibration Results of Thermistor-Type Power Sensors[J]. Metrology Science and Technology, 2024, 68(8): 58-63. doi: 10.12338/j.issn.2096-9015.2024.0075
Citation: NIE Lu, LI Xiangjun, CUI Xiaohai, WANG Zihao, ZHAO Yan. Study on Calibration Results of Thermistor-Type Power Sensors[J]. Metrology Science and Technology, 2024, 68(8): 58-63. doi: 10.12338/j.issn.2096-9015.2024.0075

Study on Calibration Results of Thermistor-Type Power Sensors

doi: 10.12338/j.issn.2096-9015.2024.0075
  • Received Date: 2024-03-12
  • Accepted Date: 2024-03-26
  • Rev Recd Date: 2024-05-22
  • Available Online: 2024-05-29
  • Publish Date: 2024-08-30
  • Thermistor-type power meters use DC substitution to measure microwave and millimeter wave power. To compensate for environmental temperature changes, these power meters typically employ both measurement and compensation bridges, operating in a dual-bridge mode. When calibrating a coaxial thermistor-type power sensor using a microcalorimeter power standard, the measurement bridge alone cannot be used, even with stable environmental temperatures. To ensure valid calibration results, both environmental temperature compensation and ceramic core temperature variation compensation (due to dual-element errors) are necessary. Experiments show that at 18 GHz and 10 mW power level, the substituted power deviation for an N-type coaxial thermistor power sensor is 0.38% when measured with single versus dual-bridge power meters. For waveguide thermistor-type power sensors with single-element structures, calibrating effective efficiency does not require consideration of single versus dual-bridge measurement issues.
  • loading
  • [1]
    CLAGUE F R. A calibration service for coaxial reference standards for microwave power[R]. NIST, 1995.
    [2]
    孙伟杰. WR-15(50GHz-75GHz)微波功率国家基准测量技术研究[D]. 北京: 北京交通大学, 2014.
    [3]
    MA S, DING J, YUAN W, et al. Study on effective efficiency measurement of a type N thermistor mount at 10MHz[C]. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou.
    [4]
    GU D, LU X, JAMROZ B F, et al. NIST-traceable microwave power measurement in a waveguide calorimeter with correlated uncertainties[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 2280-2287. doi: 10.1109/TIM.2018.2886731
    [5]
    代明珍, 崔孝海, 刘欣萌. WR-28功率基准系统中等效源反射系数测量方法[J]. 计量学报, 2012, 33(1): 68-72. doi: 10.3969/j.issn.1000-1158.2012.01.15
    [6]
    ZHAO Y, LIU J, LIU X, et al. Design of microwave medium power meter with thermal equilibrium judgement algorithm[C]. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou.
    [7]
    SHAN Y, MENG Y S, FILIPSKI P S. Evaluation of a calorimetric thermal voltage converter for RF–DC difference up to 1 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(2): 467-472. doi: 10.1109/TIM.2013.2278597
    [8]
    Vreede J P M D. Final Report of the comparison CCEM. RF-K8. CL: Calibration factor of thermistor mounts[J]. Metrologia, 2005, 42(1A): 01008. doi: 10.1088/0026-1394/42/1A/01008
    [9]
    CROWLEY T P, CLAGUE F R. A 2.4mm coaxial power standard at NIST[R]. NIST, 2001.
    [10]
    ASCROFT J T. 3.5 mm coaxial power standard[J]. IEE Proceedings - Science, Measurement and Technology, 1998, 145(4): 159-162. doi: 10.1049/ip-smt:19982099
    [11]
    KANG T W, KIM J H, YURCHUK E F, et al. Design, construction, and performance evaluation of a cryogenic 7-mm coaxial noise standard[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(2): 439-443. doi: 10.1109/TIM.2007.891132
    [12]
    DE VREEDE J P M, KORFAGE W, PERSSON P, et al. International comparison for RF power in the frequency range up to 18 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(2): 409-413. doi: 10.1109/19.918154
    [13]
    DE VREEDE J P M, KORFAGE-JANSSEN W. International comparison for RF power in the frequency range up to 18 GHz[C]. Conference on Precision Electromagnetic Measurements. Conference Digest, Sydney.
    [14]
    崔孝海, 曲璐. 蒙特卡罗方法在微波功率测量不确定度分析中的应用[J]. 计量学报, 2008, 29(1): 77-79.
    [15]
    李世平, 许化龙. 评定测量系统不确定度的方法[J]. 系统工程与电子技术, 1998, 20(10): 40-44. doi: 10.3321/j.issn:1001-506X.1998.10.011
    [16]
    YUAN W, DING S, CUI X, et al. NIM microwave power calibration and measurement capabilities[C]. 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies, 2020.
    [17]
    KOUDELNY A V, MALAY I M, PEREPELKIN V A, et al. Working standard of the unit of power of electromagnetic waves in the frequency range of 37.5–220 GHz[J]. Measurement Techniques, 2020, 63(1): 53-58. doi: 10.1007/s11018-020-01749-5
    [18]
    KWON J Y, HONG Y P, KANG N W. D-band waveguide microcalorimeter for millimeter-wave power standard[C]. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris.
    [19]
    ROY R, KUSH A K, DIXIT R P. Design and development of thermistor based power meter at 140 GHz frequency band[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(12): 1407-1414. doi: 10.1007/s10762-011-9837-y
    [20]
    SHIMAOKA K, KINOSHITA M, INOUE T. A broadband waveguide calorimeter in the frequency range from 50 to 110 GHz[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(6): 1828-1833. doi: 10.1109/TIM.2012.2225956
    [21]
    CROWLEY T P, XIAOHAI CUI. Design and evaluation of a WR-15 (50 to 75 GHz) microcalorimeter[C]. 2008 Conference on Precision Electromagnetic Measurements Digest, USA.
    [22]
    朱大成, 崔孝海. WR19(40~60 GHz)矩形波导微量热计设计[J]. 计量学报, 2012, 33(2): 163-165. doi: 10.3969/j.issn.1000-1158.2012.02.14
    [23]
    JHA P, BASU A, KOUL S K. Broadband frequency tripler design at 40–60 GHz[C]. 2016 Asia-Pacific Microwave Conference (APMC), 2016.
    [24]
    李勇, 崔孝海, 孙伟杰. WR-22微波功率基准工作原理及其不确定度[J]. 计量技术, 2014(4): 18-20.
    [25]
    CUI X, LI Y, GAO X, et al. Measurement and evaluation of the WR-28 calorimeter[C]. 77th ARFTG Microwave Measurement Conference, Baltimore.
    [26]
    XIAOHAI CUI, XINMENG LIU, YONG LI, et al. Design and measurement of a WR-28 calorimeter[C]. CPEM 2010, Daejeon.
    [27]
    HUANG Y, YUAN W, CUI X, et al. WR-42 waveguide microcalorimeter for thermistor mount calibration[C]. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris.
    [28]
    刘欣萌. 高频和微波功率基准及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [29]
    陈成仁. 同轴双元件测辐射热器座的直流-射频替代误差[J]. 宇航计测技术, 1981(4): 1.
    [30]
    ENGEN G F. A DC-RF substitution error in duel-element bolometer mounts[J]. IEEE Transactions on Instrumentation and Measurement, 1964, IM-13(2/3): 58-64. doi: 10.1109/TIM.1964.4313375
    [31]
    SELBY M C. Bolometric voltage and current (bolovac) standard for high and microwave frequencies[J]. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 1968, 72C(1): 61. doi: 10.6028/jres.072C.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (88) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return