Turn off MathJax
Article Contents
LIN Junjie, DENG Fanfeng, ZHOU Li, XU Xiangdong, LI Zhiang, ZHANG Ting, XIAO Lian, WEI Dong, PAN Yi. Development and Application of an On-Line Micro Gas Chromatograph with Thermal Conductivity Detector for Natural Gas Energy Metering[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0078
Citation: LIN Junjie, DENG Fanfeng, ZHOU Li, XU Xiangdong, LI Zhiang, ZHANG Ting, XIAO Lian, WEI Dong, PAN Yi. Development and Application of an On-Line Micro Gas Chromatograph with Thermal Conductivity Detector for Natural Gas Energy Metering[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0078

Development and Application of an On-Line Micro Gas Chromatograph with Thermal Conductivity Detector for Natural Gas Energy Metering

doi: 10.12338/j.issn.2096-9015.2024.0078
  • Received Date: 2024-03-12
  • Accepted Date: 2024-03-15
  • Rev Recd Date: 2024-08-01
  • Available Online: 2024-08-21
  • The micro gas chromatograph for natural gas energy metering has long been monopolized by foreign companies, creating disadvantages for China in international natural gas trade. Developing domestic alternatives is therefore of great significance. This study developed several key components for natural gas energy metering, including a micro chromatographic injection system, micro thermal conductivity detector (μ-TCD), and an online chromatographic workstation for energy value calculation. The research team has led the development of a highly reliable micro on-line gas chromatograph for natural gas energy metering with independent intellectual property rights in China. The experimental prototype has been successfully applied at natural gas flow metering stations and hydrogen production sites, analyzing 11 components in natural gas such as N2, CO2, and C1–C6 with an analysis cycle of 2.5 minutes. The detection limit for hexane is 80 μmol/mol, the resolution (R) between n-butane and isobutane is 2.0, the repeatability for n-butane quantification is 0.30%, and the 4-hour instrument stability test shows a deviation of 0.07%. The prototype has passed long-term stability testing of 6020 operating hours, meeting the requirements for natural gas energy metering. This domestically developed micro gas chromatograph represents a significant step toward replacing foreign models, providing crucial measurement technology support for national energy security and the achievement of China's "dual carbon" strategic goals.
  • loading
  • [1]
    GROB R L, Barry E F. Modern practice of gas chromatography[M]. 4nd ed. New York: A John Wiley & Sons, Inc. , 2004: 1-25.
    [2]
    JAMES A T, Martin A J P. Gas-liquid Partition Chromatography: the Separation and Micro-estimation of Volatile Fatty Acids from Formic Acid to. Dodecanoic Acid[J]. Biochemical Journal, 1952, 50: 679-690. doi: 10.1042/bj0500679
    [3]
    Smolková-Keulemansová E. A few milestones on the journey of chromatography[J]. Journal of High Resolution Chromatography, 2000, 23(7-8): 497-501. doi: 10.1002/1521-4168(20000801)23:7/8<497::AID-JHRC497>3.0.CO;2-S
    [4]
    汪晓菁, 石瑞红, 徐立英, 等. 二维气相色谱技术分析混合碳四馏分中微量炔烃[J]. 分析仪器, 2009(4): 29-32. doi: 10.3969/j.issn.1001-232X.2009.04.007
    [5]
    冯学良, 汪素芳, 王晓伟, 等. 液液萃取-气相色谱质谱法检测污染场地地下水中合成麝香[J]. 分析试验室, 2022, 41(9): 1016-1020.
    [6]
    丁立平, 王丹红, 蔡春平. 液液萃取-气相色谱法直接测定罐装茶饮料中7种痕量卤乙酸[J]. 分析试验室, 2021, 40(4): 449-453.
    [7]
    RAY N H. Gas chromatography. II. The separation and analysis of gas mixtures by chromatographic methods[J]. Journal of Applied Chemistry, 1954, 4(2): 82-85. doi: 10.1002/jctb.5010040205
    [8]
    MARTIN A J P. 4th International Symposium on Gas Chromatography [C]. London: Butterworths, 1963.
    [9]
    SYED A, MEHDI A-K, TAYLOR L T, et al. MEMS-based semi-packed gas chromatography columns[J]. Sensors and Actuators B: Chemical, 2009, 141(1): 309-315. doi: 10.1016/j.snb.2009.06.022
    [10]
    SUN J H, CUI D F, CHEN X, et al. Fabrication and characterization of microelectromechanical systems-based gas chromatography column with embedded micro-posts for separation of environmental carcinogens[J]. Journal of Chromatography A, 2013, 1291(10): 122-128.
    [11]
    孙建海, 崔大付, 蔡浩原, 等. 基于微机电子系统技术高性能气相色谱柱的制备[J]. 分析化学, 2010, 38(2): 293-295.
    [12]
    ZHAO B, FENG F, TIAN B W, et al. Micro thermal conductivity detector based on SOI substrate with low detection limit[J]. Sensors and Actuators B: Chemical, 2020, 308: 127682. doi: 10.1016/j.snb.2020.127682
    [13]
    TERRY S C, JERMAN J H, ANGELL J B. A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer[J]. IEEE Trans Electron Devices, 1979, 26(12): 1880-1886. doi: 10.1109/T-ED.1979.19791
    [14]
    BARTLE K D, MYERS P. History of gas chromatography[J]. Trends in Analytical Chemistry, 2002, 21(9-10): 547-557. doi: 10.1016/S0165-9936(02)00806-3
    [15]
    李加福, 朱小平, 杜华, 等. 金属薄膜厚度测量技术分析[J]. 计量科学与技术, 2020, 64(7): 62-65,50. doi: 10.3969/j.issn.1000-0771.2020.07.17
    [16]
    高宜孝. 气相色谱仪检定中记录值(毫伏)和技术指标值(安培)之间的换算[J]. 计量科学与技术, 1992, 36(5): 30-32.
    [17]
    全国天然气标准化技术委员会. 天然气发热量、密度、相对密度和沃泊指数的计算方法: GB/T 11062-2020[S]. 北京: 中国标准出版社, 2020.
    [18]
    宋笑明, 许雪琼, 杨占旗. 氮中氢气体标准物质气相色谱分析方法的研究[J]. 计量科学与技术, 2014, 58(9): 37-40. doi: 10.3969/j.issn.1000-0771.2014.09.11
    [19]
    贾玲玲, 吴运逸. 我国天然气能量计量计价单位及基准值研究[J]. 计量科学与技术, 2023, 67(1): 45-49. doi: 10.12338/j.issn.2096-9015.2022.0097
    [20]
    成伟, 杨添波, 李长武, 等. 多气源格局下天然气计量体系国内外进展[J]. 计量科学与技术, 2024, 68(1): 3-9,75. doi: 10.12338/j.issn.2096-9015.2023.0321
    [21]
    叶朋, 顾志烈, 施世信. 天然气管网能量计量与管理系统的实现[J]. 计量科学与技术, 2014, 58(11): 12-14. doi: 10.3969/j.issn.1000-0771.2014.11.03
    [22]
    曹德祥. 基于MEMS技术的微型气相色谱仪的研制[J]. 分析仪器, 2007(3): 9-12. doi: 10.3969/j.issn.1001-232X.2007.03.003
    [23]
    胡君杰. 微型热导检测器晶圆级封装的设计与制作[D]. 成都: 电子科技大学, 2021.
    [24]
    关亚风, 微型分离分析仪器与技术[M]. 北京: 科学出版社, 2021: 84-90.
    [25]
    张敏刚, 胡君杰, 熊可, 等. 微型热导检测器的研究进展[J]. 中国测试, 2020, 46(8): 1-8. doi: 10.11857/j.issn.1674-5124.2019120029
    [26]
    曾文平, 周理, 胡仲可, 等. 国产在线气相色谱仪分析天然气组成的适应性研究[J]. 石油与天然气化工, 2023, 52(2): 116-122. doi: 10.3969/j.issn.1007-3426.2023.02.019
    [27]
    孙丽敏, 陈国涛, 贾晓迪. 双色谱柱分析模块型在线气相色谱仪校准方法探讨[J]. 计量科学与技术, 2014, 58(11): 54-57. doi: 10.3969/j.issn.1000-0771.2014.11.18
    [28]
    全国天然气标准化技术委员会. 天然气在线气相色谱仪性能评价: SY/T 7658-2021[S]. 北京: 石油工业出版社, 2021.
    [29]
    全国物理化学计量技术委员会. 在线气相色谱仪: JJG 1055-2009[S]. 北京: 中国计量出版社, 2009.
    [30]
    中国人民解放军总装备部. 可靠性鉴定和验收试验: GJB 899A-2009[S]. 北京: 总装备部军标出版发行部, 2009.
    [31]
    全国气体标准化技术委员会. 气体分析微型热导气相色谱法: GB/T 43362-2023[S]. 北京: 中国标准出版社, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (92) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return