Volume 68 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHAO Xing, BAN Hao, HONG Li, LIU Xiao. Data Processing Methods for Quiet Zone Reflectivity Level in Microwave Anechoic Chambers[J]. Metrology Science and Technology, 2024, 68(8): 78-82, 37. doi: 10.12338/j.issn.2096-9015.2024.0087
Citation: ZHAO Xing, BAN Hao, HONG Li, LIU Xiao. Data Processing Methods for Quiet Zone Reflectivity Level in Microwave Anechoic Chambers[J]. Metrology Science and Technology, 2024, 68(8): 78-82, 37. doi: 10.12338/j.issn.2096-9015.2024.0087

Data Processing Methods for Quiet Zone Reflectivity Level in Microwave Anechoic Chambers

doi: 10.12338/j.issn.2096-9015.2024.0087
  • Received Date: 2024-03-15
  • Accepted Date: 2024-04-10
  • Rev Recd Date: 2024-06-07
  • Available Online: 2024-06-21
  • Publish Date: 2024-08-30
  • Microwave anechoic chambers are enclosed spaces specifically designed for measurements in the microwave frequency range, used as experimental sites for antenna and target scattering characteristics measurements to simulate free space. Compared to outdoor test sites, these chambers offer advantages of all-weather operation and low reflection. However, due to the imperfect absorption of electromagnetic waves by internal materials in specific frequency bands, interfering reflected signals still exist in the test area. These signals enter from various directions and overlap with direct waves between transceiver antennas, forming spatial standing wave distributions over certain distances. The interference reflection index in the test area is characterized by the quiet zone reflectivity level. When using microwave anechoic chambers to measure parameters such as antenna radiation patterns, the reflectivity level at different angles should be evaluated. The free-space voltage standing wave ratio (VSWR) method is commonly employed to measure this reflectivity level. In the test area, the vector sum of direct and reflected signals forms spatial standing waves along specific paths. The data processing method for these standing waves determines the calculated reflectivity level of the quiet zone, with the selection of peak-to-peak values in actual test curves directly influencing measurement results. This article discusses in detail the collection and processing methods of reflection level data in microwave anechoic chambers, aiming to optimize on-site measurement and testing schemes. Additionally, this research provides valuable insights for the optimal design of quiet zone scanning frames, potentially enhancing the overall accuracy and reliability of microwave measurements in anechoic environments.
  • loading
  • [1]
    IEEE. IEEE Standard Test Procedures for Antennas : IEEE Std 149™-1979 (R2008) [S]. US: IEEE-SA Standards Board, 2008.
    [2]
    侯颖妮, 李道京, 洪文, 等. 稀疏阵列微波暗室成像实验研究[J]. 电子与信息学报, 2010, 32(9): 2258-2262.
    [3]
    刘潇, David Gentle. 外推法天线增益测量系统的暗室反射影响评估[J]. 电波科学学报, 2016, 31(5): 1004-1008.
    [4]
    Suganthi, Sellakkutti, Patil, et al. Integration of 0.1 GHz to 40 GHz RF and microwave anechoic chamber and the intricacies[J]. Progress In Electromagnetics Research C, 2020, 101: 29-42. doi: 10.2528/PIERC19102403
    [5]
    LE COQ Laurent, Fuchs Benjamin, Kozan Thomas, et al. IETR millimeter-wave Compact Antenna Test Range implementation and validation[C]. 2015 9th European Conference on Antennas and Propagation, 2015.
    [6]
    Mandaris, Dwi Moonen, Niek Van De Beek, et al. Validation of a Fully Anechoic Chamber[C]. 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2016.
    [7]
    J APPEL-HANSEN. Reflectivity level of radio anechoic chambers[J]. IEEE transaction on antennas and propagation, 1973(AP-21): 490-498.
    [8]
    刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94.
    [9]
    Yang C F, Burnside W D, Rudduck R C. A periodic moment method solution for TM scattering from lossy dielectric bodies with application to wedge absorber[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 652-660. doi: 10.1109/8.144599
    [10]
    DeWitt B T, Burnside W D. Electromagnetic scattering by pyramidal and wedge absorber[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(7): 971-984. doi: 10.1109/8.7202
    [11]
    Janaswamy R. Oblique scattering from lossy periodic surfaces with applications to anechoic chamber absorbers[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(2): 162-169. doi: 10.1109/8.127400
    [12]
    Gau R J, Burnside W D, Gilreath M. Chebyshev multilevel absorber design concept[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(8): 1286-1293. doi: 10.1109/8.611249
    [13]
    王相元, 朱航飞, 钱鉴等. 微波暗室吸波材料的分析和设计[J]. 微波学报, 2000(04): 389-398+406. doi: 10.3969/j.issn.1005-6122.2000.04.011
    [14]
    肖本龙, 王雷钢, 杨黎都. 微波暗室吸波材料及其性能测试方法[J]. 舰船电子工程, 2010, 30(7): 161-165. doi: 10.3969/j.issn.1627-9730.2010.07.049
    [15]
    Farahbakhsh A, Khalaj-Amirhosseini M. Using Metallic Ellipsoid Anechoic Chamber to Reduce the Absorber Usage[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4229-4232. doi: 10.1109/TAP.2015.2448791
    [16]
    王志宇, 乔闪, 袁宇, 等. 微波暗室静区性能的测量方法[J]. 微波学报, 2007(S1): 69-72. doi: 10.3969/j.issn.1005-6122.2007.z1.017
    [17]
    师建龙, 全厚德, 甘连仓, 等. 微波暗室静区反射电平计算方法研究[J]. 舰船电子工程, 2010, 30(10): 92-94. doi: 10.3969/j.issn.1627-9730.2010.10.026
    [18]
    薛锋章. 天线辐射参数测量暗室相关问题探讨[J]. 电信技术, 2016(8): 23-29. doi: 10.3969/j.issn.1000-1247.2016.08.002
    [19]
    朱传焕. 微波暗室反射率电平对微波场强校准的影响[J]. 计测技术, 2008(4): 31-34. doi: 10.3969/j.issn.1674-5795.2008.04.010
    [20]
    Appel-Hansen J. Reflectivity level of radio anechoic chambers[J]. IEEE Transactions on Antennas and Propagation, 1973, 21(4): 490-498. doi: 10.1109/TAP.1973.1140524
    [21]
    CAI Z H, ZHOU Y T, LIU L, et al. Small Anechoic Chamber Design Method for On-Line and On-Site Passive Intermodulation Measurement[J]. Transactions on Instrumentation and Measurement, 2020, 69(6): 3377-3387. doi: 10.1109/TIM.2019.2937425
    [22]
    THORKILD B H, RICHARD A M, JUSTIN S H, et al. Methods for locating stray-signal sources in anechoic chambers[J]. Transactions on Instrumentation and Measurement, 2008, 57(3): 480-489. doi: 10.1109/TIM.2007.911574
    [23]
    ROBERTO D L, VALTER M P. Primiani, Radiated immunity tests: reverberation chamber versus anechoic chamber results[J]. Transactions on Instrumentation and Measurement, 2006, 55(4): 1169-1174. doi: 10.1109/TIM.2006.876391
    [24]
    ISABEL E, MANUEL G S, INIGO C. Uncertainty Assessment of a Small Rectangular Anechoic Chamber: From Design to Operation[J]. Transactions on Antennas and Propagation, 2020, 68(6): 4871-4880. doi: 10.1109/TAP.2020.2969842
    [25]
    TUQA K, LUTFI A, NASSER Q, et al. Feasibility Study of Using Electrically Conductive Concrete for Electromagnetic Shielding Applications as a Substitute for Carbon-Laced Polyurethane Absorbers in Anechoic Chambers[J]. Transactions on Antennas and Propagation, 2017, 65(5): 2428-2435. doi: 10.1109/TAP.2017.2670538
    [26]
    DANI R, IGAL B. Challenges in Automotive MIMO Radar Calibration in Anechoic Chamber[J]. Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6205-6214.
    [27]
    CARMEN E, ANGELO G, STEFANO P. Measurement of the Antenna Phase Center Position in Anechoic Chamber[J]. Antennas and Wireless Propagation Letters, 2018, 17(12): 2183-2187. doi: 10.1109/LAWP.2018.2870751
    [28]
    徐若曦, 周鹏, 章锦文. 基于双层涂敷模型的暗室静区精确计算方法[J]. 华中科技大学学报(自然科学版), 2015, 43(11): 73-77.
    [29]
    郝晓军, 陈永光, 何建国, 等. FDTD计算暗室静区指标[J]. 微波学报, 2007(S1): 194-197. doi: 10.3969/j.issn.1005-6122.2007.z1.045
    [30]
    HITOSHI T, KENNICHI H, KENJI Y, et al. Reflectivity measurements in anechoic chambers in the microwave to millimeter range[J]. Transactions on Electromagnetic Compatibility, 2005, 47(2): 312-319. doi: 10.1109/TEMC.2005.847394
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (117) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return