Volume 68 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
JIA Chao, ZHANG Yihang, CHEN Shuo, LI Yong, CUI Xiaohai. Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method[J]. Metrology Science and Technology, 2024, 68(8): 32-37. doi: 10.12338/j.issn.2096-9015.2024.0090
Citation: JIA Chao, ZHANG Yihang, CHEN Shuo, LI Yong, CUI Xiaohai. Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method[J]. Metrology Science and Technology, 2024, 68(8): 32-37. doi: 10.12338/j.issn.2096-9015.2024.0090

Analysis of the Equivalent Source Reflection Coefficient and Limitations of K. Shimaoka’s Measurement Method

doi: 10.12338/j.issn.2096-9015.2024.0090
  • Received Date: 2024-03-18
  • Accepted Date: 2024-05-06
  • Rev Recd Date: 2024-05-06
  • Available Online: 2024-06-27
  • Publish Date: 2024-08-30
  • The equivalent source reflection coefficient plays a crucial role in microwave power measurement and uncertainty evaluation. This paper first discusses the relationship between the source reflection coefficient in amplitude-stabilized signal source systems and the equivalent source reflection coefficient when measuring power ratios using three-port devices. The concept of "equivalent" in the equivalent source reflection coefficient is explained from the perspective of the mismatch factor. Next, the working principle and limitations of K. Shimaoka's method for measuring equivalent source reflection coefficient using a network analyzer and three-port devices are briefly introduced. Finally, experiments and comparisons are conducted using N-type power dividers and directional couplers as measurement objects, based on K. Shimaoka's method and the traditional formula method in the 1-18 GHz frequency range. Results indicate that K. Shimaoka's method for measuring equivalent source reflection coefficient has certain limitations. Due to the small difference in transmission coefficients obtained in this calculation method, it is sensitive to minor changes and thus unsuitable for measuring equivalent source reflection coefficients when using three-port devices with good directionality (such as directional couplers).
  • loading
  • [1]
    MENG Y S, SHAN Y. Note on handling source mismatch in RF power measurement and metrology[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [2]
    LIU J W, YUAN W Z, ZHAO W, et al. Calibration principle and correction factor for flow calorimeter in RF medium-power measurement[J]. IEEE Transaction on Instrumentation and measurement, 2023, 72: 8004708.
    [3]
    黎明, 李再奎, 史清林. 定向耦合器与检波器组成等效信号源反射系数的分析[J]. 齐齐哈尔师范学院学报(自然科学版), 1995, 15(2): 15-17.
    [4]
    LAI H W, TSUI C M, YANG S L, et al. On propagation of uncertainties through the measurement models of two calibration methods for microwave power splitters[C]. 2020 Conference on precision electromagnetic measurements (CPEM), 2020.
    [5]
    ENGEN G F. Amplitude stabilization of a microwave signal source[J]. IRE Trans Microwave Theory Tech, 1958, MTT-6: 202-206.
    [6]
    DINH DD, LANCASTER MJ. Microwave power sensors with integrated filtering function for transfer power standards[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(3): 308-311. doi: 10.1109/LMWC.2020.2969570
    [7]
    DING JX, MA SS, YUAN WZ, et. al. A new method for measuring calibration factors of Microwave power transfer standard[C]. 8th IEEE MTT-S International Wireless Symposium (IWS) part of China Microwave Week, 2021.
    [8]
    朱军, 李建一, 王增浩. 低反射系数等效信号源的测试方法研究[J]. 中国测试技术, 2008, 34(3): 34-36.
    [9]
    RUEFENACHT J, WOLLENSACK M, HOFFMANN J, et al. Practical hints: splitter characterization[R]. METAS, 2015.
    [10]
    SHIMAOKA K. A new method for measuring accurate equivalent source reflection coefficient of three-port devices[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [11]
    TOROK A, JANIK D, PEINELT W, et al. Efficient broadband method for equivalent source reflection coefficient measurements[J]. IEEE Trans Instrument & Measurement, 2001, 50(2): 361-366.
    [12]
    KIM JH, KANG JS, KWON, JY, et al. A wide-band method to measure the equivalent reflection coefficient of signal sources[C]. 79th ARFTG Microwave Measurement Conference, 2012.
    [13]
    陈云梅, 杨春涛. 用大失配功率座法测量稳幅环路的等效信号源[J]. 宇航计测技术, 2002, 22(1): 7-12. doi: 10.3969/j.issn.1000-7202.2002.01.002
    [14]
    方维海, 温鑫, 张璐, 等. 信号源复反射系数测量技术研究[J]. 微波学报, 2014, 30(3): 63-66.
    [15]
    崔孝海, 梁伟军, 赵巍, 等. 微波功率计中校准信号源反射系数测量方法: 201610804858.2[P]. 2017-02-15.
    [16]
    王晋淦. 信号发生器源反射系数的测量方法[J]. 电子测量与仪器学报, 1987, 1(3): 1-10.
    [17]
    CUI GY, LI Y, YUAN WZ, et al. Non-destructive measurement of equivalent source reflection coefficient using a tuner[C]. 15th UK-Europe-China Workshop on Millimeter-waves and Terahertz Technologies, 2022.
    [18]
    张翠翠, 王益, 王建忠. 有源器件端口反射系数测量方法分析[J]. 太赫兹科学与电子信息学报, 2015, 13(2): 267-271. doi: 10.11805/TKYDA20150217.267
    [19]
    Reichel T. Procedure for measuring the equivalent reflection coefficient of power splitter[R]. Rohde & Schwarz Munich, 1998.
    [20]
    陈硕, 袁文泽, 贾超, 等. 等效源反射系数及其在线测量方法的研究[J]. 计量科学与技术, 2023, 67(4): 70-76.
    [21]
    KANG TW, KWON JY, PARK JI, et al. RF and microwave power standards from 10MHz to 40GHz over decades[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(2): 88-93. doi: 10.26866/jees.2018.18.2.88
    [22]
    BOTELLO, REREA M, CROWLEY TP, et al. CENAM's Primary Standard for Microwave power up to 18GHz[C]. Conference on Precision Electromagnetic Measurements, 2016.
    [23]
    RAKONJAC P, MITROVIC Z, MILANOVIC I, et al. Improved method for calibration and nonlinearity correction of microwave power sensor[J]. Tehnicki Vjsenik-thchnical Gazette, 2022, 29(2): 415-427.
    [24]
    BOTELLO, REREA M, CROWLEY TP, et al. A 2.4mm coaxial microcalorimeter for use as millimeter-wave power standard at CENAM[J]. IEEE Transaction on Instrument and Measurement, 2021, 70: 1001910.
    [25]
    BOTELLO, REREA M, CROWLEY TP, et al. CENAM's Primary standard for high frequency power up to 50GHz[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [26]
    BAKTI AN, KWON JY, CHO C, et al. Millimeter-wave power standard transfer systems from 50GHz to 330GHz[C]. Conference on Precision Electromagnetic Measurements, 2020.
    [27]
    GU DZ, LU XF, LAMROZ B, et al. A self-calibrated transfer standard for microwave calorimetry[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [28]
    DING N, CUI XH, LI Y, et al. Application of Monte Carlo method in uncertainty analysis of mismatch factor[C]. Conference on Precision Electromagnetic Measurements, 2018.
    [29]
    冯亮, 张露妍. 浅析定向耦合器在中功率计校准中的应用[J]. 仪器仪表标准化与计量, 2014, 1: 43-45. doi: 10.3969/j.issn.1672-5611.2014.01.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (46) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return