Volume 68 Issue 5
May  2024
Turn off MathJax
Article Contents
XIN Yunfei, WANG Jin, ZHANG Cheng, LI Daifu, YE Zihan, PAN Yijie. Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity[J]. Metrology Science and Technology, 2024, 68(5): 83-91. doi: 10.12338/j.issn.2096-9015.2024.0092
Citation: XIN Yunfei, WANG Jin, ZHANG Cheng, LI Daifu, YE Zihan, PAN Yijie. Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity[J]. Metrology Science and Technology, 2024, 68(5): 83-91. doi: 10.12338/j.issn.2096-9015.2024.0092

Research Progress on Narrow Linewidth Lasers Based on Whispering Gallery Mode Microcavity

doi: 10.12338/j.issn.2096-9015.2024.0092
  • Received Date: 2024-03-19
  • Accepted Date: 2024-04-09
  • Rev Recd Date: 2024-04-10
  • Available Online: 2024-05-10
  • Publish Date: 2024-05-18
  • Narrow linewidth lasers play a vital role in cutting-edge fields such as quantum technology, time-frequency transmission, and high-precision sensing due to their extremely low phase noise. Whispering gallery mode optical microcavities, owing to their high quality factor, tiny mode volume, and wide optical transparent window, can significantly enhance the interaction between light and matter. These microcavities not only achieve good laser linewidth narrowing effects across a wide spectral range but also offer excellent tunability, making them a hot topic in narrow linewidth laser research. This paper reviews the research progress of narrow linewidth lasers based on whispering gallery mode microcavities. It first introduces whispering gallery mode microcavities, their thermal noise theoretical foundation, and the principles of laser linewidth evaluation. Then, it discusses the main methods for generating narrow linewidth lasers using whispering gallery mode microcavities, including pumped narrow linewidth lasers based on stimulated Brillouin scattering and stimulated Raman scattering effects, as well as locked narrow linewidth lasers using self-injection locking and Pound-Drever-Hall (PDH) locking technologies. The research status, key technical characteristics, and performance metrics of these methods are summarized. Additionally, the research progress of the National Institute of Metrology in developing narrow linewidth lasers based on high quality factor crystal whispering gallery mode microcavities is introduced. Finally, the paper provides a summary and outlook on the development of narrow linewidth lasers based on whispering gallery mode microcavities.
  • loading
  • [1]
    Olsson S L I, Cho J, Chandrasekhar S, et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection[J]. Optics Express, 2018, 26(4): 4522-4530. doi: 10.1364/OE.26.004522
    [2]
    Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 2018, 359(6378): 884-887. doi: 10.1126/science.aao1968
    [3]
    Corato-Zanarella M, Gil-Molina A, Ji X C, et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths[J]. Nature Photonics, 2023, 17(2): 157-164. doi: 10.1038/s41566-022-01120-w
    [4]
    Siegman A E. Lasers [M]. University science books, 1986.
    [5]
    Yariv A, Yeh P. Photonics: optical electronics in modern communications [M]. Oxford university press, 2007.
    [6]
    Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser[J]. Nature Physics, 2006, 2(7): 484-488. doi: 10.1038/nphys343
    [7]
    Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [8]
    Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [9]
    Matei D G, Legero T, Hafner S, et al. 1.5 um Lasers with Sub-10 mHz Linewidth[J]. Physical Review Letters, 2017, 118(26): 263202. doi: 10.1103/PhysRevLett.118.263202
    [10]
    Van V. Optical microring resonators: theory, techniques, and applications [M]. CRC Press, 2016.
    [11]
    Vincent S, Subramanian S, Vollmer F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime[J]. Nature Communications, 2020, 11(1): 2043. doi: 10.1038/s41467-020-15822-8
    [12]
    Liao J, Yang L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements [J]. Light: Science & Applications, 2021, 10(1): 32.
    [13]
    Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 2013, 8(2): 145-152.
    [14]
    Yu D S, Chen J B, Zhang S G. Active whispering-gallery microclock in pulsed-operation mode[J]. Physical Review A, 2023, 107(4): 043712. doi: 10.1103/PhysRevA.107.043712
    [15]
    Lim J, Savchenkov A A, Dale E, et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization[J]. Nature communications, 2017, 8(1): 8. doi: 10.1038/s41467-017-00021-9
    [16]
    Strutt J W, Rayleigh B. The problem of the whispering gallery[J]. Philosophical magazine, 1910, 20(5).
    [17]
    唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感[J]. 物理, 2019, 48(3): 137-147. doi: 10.7693/wl20190301
    [18]
    Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. doi: 10.1007/s00340-006-2225-y
    [19]
    Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602. doi: 10.1103/PhysRevLett.93.250602
    [20]
    Matsko A B, Savchenkov A A, Yu N, et al. Whispering-gallery-mode resonators as frequency references I Fundamental limitations[J]. Journal of the Optical Society of America B, 2007, 24(6): 1324-1335. doi: 10.1364/JOSAB.24.001324
    [21]
    Savchenkov A A, Matsko A B, Ilchenko V S, et al. Whispering-gallery-mode resonators as frequency references II Stabilization[J]. Journal of the Optical Society of America B, 2007, 24(12): 2988-2997. doi: 10.1364/JOSAB.24.002988
    [22]
    Hjelme D R, Mickelson A R, Beausoleil R G. Semiconductor laser stabilization by external optical feedback[J]. IEEE Journal of Quantum Electronics, 1991, 27(3): 352-372. doi: 10.1109/3.81333
    [23]
    Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 2010, 49(25): 4801-4807. doi: 10.1364/AO.49.004801
    [24]
    Liang W, Ilchenko V S, Eliyahu D, et al. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 2015, 6(1): 7371. doi: 10.1038/ncomms8371
    [25]
    Chen S Y, Sun T, Grattan K T V, et al. Characteristics of Er and Er–Yb–Cr doped phosphate microsphere fibre lasers[J]. Optics Communications, 2009, 282(18): 3765-3769. doi: 10.1016/j.optcom.2009.06.019
    [26]
    Li M, Gan J, Zhang Z, et al. Single mode compound microsphere laser[J]. Optics Communications, 2018, 420(1): 1-5.
    [27]
    Zhao J, Zhang C, Ji Z, et al. Widely tunable ultra-narrow linewidth single-longitudinal-mode Brillouin fiber laser with low threshold[J]. Laser Physics, 2014, 24(10): 105102. doi: 10.1088/1054-660X/24/10/105102
    [28]
    Chen M, Meng Z, Zhou H. Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser[J]. Journal of Lightwave Technology, 2013, 31(12): 1980-1986. doi: 10.1109/JLT.2013.2263297
    [29]
    Grudinin I S, Matsko A B, Maleki L. Brillouin lasing with a CaF2 whispering gallery mode resonator[J]. Physical Review Letters, 2009, 102(4): 043902. doi: 10.1103/PhysRevLett.102.043902
    [30]
    Gundavarapu S, Brodnik G M, Puckett M, et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J]. Nature Photonics, 2019, 13(1): 60-67. doi: 10.1038/s41566-018-0313-2
    [31]
    Debut A, Randoux S, Zemmouri J. Linewidth narrowing in Brillouin lasers: Theoretical analysis[J]. Physical Review A, 2000, 62(2): 023803. doi: 10.1103/PhysRevA.62.023803
    [32]
    Debut A, Randoux S, Zemmouri J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers[J]. JOSA B, 2001, 18(4): 556-567. doi: 10.1364/JOSAB.18.000556
    [33]
    Sonehara T, Konno Y, Kaminaga H, et al. Frequency-modulated stimulated Brillouin spectroscopy in crystals[J]. JOSA B, 2007, 24(5): 1193-1198. doi: 10.1364/JOSAB.24.001193
    [34]
    Botter R, Ye K, Klaver Y, et al. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits[J]. Science Advances, 2022, 8(40): 2196. doi: 10.1126/sciadv.abq2196
    [35]
    Lee H, Chen T, Li J, et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 2012, 6(6): 369-373. doi: 10.1038/nphoton.2012.109
    [36]
    Loh W, Becker J, Cole D C, et al. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth[J]. New Journal of Physics, 2016, 18(4): 045001. doi: 10.1088/1367-2630/18/4/045001
    [37]
    Lu T, Yang L, Carmon T, et al. A Narrow-Linewidth On-Chip Toroid Raman Laser[J]. IEEE Journal of Quantum Electronics, 2011, 47(3): 320-326. doi: 10.1109/JQE.2010.2087742
    [38]
    Liu K, Yao S, Ding Y, et al. Fundamental linewidth of an AlN microcavity Raman laser[J]. Optics Letters, 2022, 47(17): 4295-4298. doi: 10.1364/OL.466195
    [39]
    Vassiliev V V, Velichansky V L, Ilchenko V S, et al. Narrow-line-width diode laser with a high-Q microsphere resonator[J]. Optics Communications, 1998, 158(1-6): 305-312. doi: 10.1016/S0030-4018(98)00578-1
    [40]
    Kondratiev N M, Lobanov V E, Cherenkov A V, et al. Self-injection locking of a laser diode to a high-Q WGM microresonator[J]. Optics Express, 2017, 25(23): 28167-28178. doi: 10.1364/OE.25.028167
    [41]
    Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824. doi: 10.1364/OL.35.002822
    [42]
    Ilchenko V, Dale E, Liang W, et al. Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator [C]. Laser Resonators and Beam Control XIII. SPIE, 2011.
    [43]
    Kudryashov A V, Paxton A H, Ilchenko V S, et al. On phase noise of self-injection locked semiconductor lasers [C]. Laser Resonators, Microresonators, and Beam Control XVI. SPIE, 2014.
    [44]
    Savchenkov A A, Chiow S-W, Ghasemkhani M, et al. Self-injection locking efficiency of a UV Fabry–Perot laser diode[J]. Optics Letters, 2019, 44(17): 4175-4178. doi: 10.1364/OL.44.004175
    [45]
    Donvalkar P S, Savchenkov A, Matsko A. Self-injection locked blue laser[J]. Journal of Optics, 2018, 20(4): 045801. doi: 10.1088/2040-8986/aaae4f
    [46]
    Xie Z, Liang W, Savchenkov A A, et al. Extended ultrahigh-Q-cavity diode laser[J]. Optics Letters, 2015, 40(11): 2596-2599. doi: 10.1364/OL.40.002596
    [47]
    Lai Y-H, Eliyahu D, Ganji S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers [C]. Laser Resonators, Microresonators, and Beam Control XXII. 2020.
    [48]
    Lai Y-H, Love S, Savchenkov A, et al. 871nm Ultra-Narrow-Linewidth Laser for Yb+ Clock [C]. CLEO: Science and Innovations. Optica Publishing Group, 2021.
    [49]
    Dale E, Bagheri M, Matsko A B, et al. Microresonator stabilized 2 mum distributed-feedback GaSb-based diode laser[J]. Optics Letters, 2016, 41(23): 5559-5562. doi: 10.1364/OL.41.005559
    [50]
    Savchenkov A A, Eliyahu D, Heist B, et al. On acceleration sensitivity of 2 mum whispering gallery mode-based semiconductor self-injection locked laser[J]. Applied Optics, 2019, 58(9): 2138-2145. doi: 10.1364/AO.58.002138
    [51]
    Galiev R R, Pavlov N G, Kondratiev N M, et al. Spectrum collapse, narrow linewidth, and Bogatov effect in diode lasers locked to high-Q optical microresonators[J]. Optics Express, 2018, 26(23): 30509-30522. doi: 10.1364/OE.26.030509
    [52]
    Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes[J]. Nature Photonics, 2018, 12(11): 694-698. doi: 10.1038/s41566-018-0277-2
    [53]
    Xiang C, Guo J, Jin W, et al. High-performance lasers for fully integrated silicon nitride photonics[J]. Nature Communications, 2021, 12(1): 6650. doi: 10.1038/s41467-021-26804-9
    [54]
    Jin W, Yang Q-F, Chang L, et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators[J]. Nature Photonics, 2021, 15(5): 346-353. doi: 10.1038/s41566-021-00761-7
    [55]
    Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization[J]. Physical Review A, 2011, 84(1): 011804. doi: 10.1103/PhysRevA.84.011804
    [56]
    Loh W, Green A A S, Baynes F N, et al. Dual-microcavity narrow-linewidth Brillouin laser[J]. Optica, 2015, 2(3): 225-232. doi: 10.1364/OPTICA.2.000225
    [57]
    Liu K, Dallyn J H, Brodnik G M, et al. Photonic circuits for laser stabilization with ultra-low-loss and nonlinear resonators[J]. arXiv preprint arXiv: 2107.03595, 2021.
    [58]
    Qu Z, Liu X, Zhang C, et al. Fabrication of an ultra-high quality MgF 2 micro-resonator for a single soliton comb generation[J]. Optics Express, 2023, 31(2): 3005-3016. doi: 10.1364/OE.478863
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (167) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return