Turn off MathJax
Article Contents
LIU Hongguang, ZHAO Lingzhe, SUN Quan, FAN Hua, WANG Wei, ZHENG Yelong, ZHAO Meirong. Research on Ranging Calibration Method Based on Common Optical Path Approach[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0110
Citation: LIU Hongguang, ZHAO Lingzhe, SUN Quan, FAN Hua, WANG Wei, ZHENG Yelong, ZHAO Meirong. Research on Ranging Calibration Method Based on Common Optical Path Approach[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0110

Research on Ranging Calibration Method Based on Common Optical Path Approach

doi: 10.12338/j.issn.2096-9015.2024.0110
  • Received Date: 2024-04-02
  • Accepted Date: 2024-05-11
  • Rev Recd Date: 2024-05-28
  • Available Online: 2024-08-06
  • In the existing handheld laser rangefinder detection method, there were problems such as shortage of field baseline field and poor practicality of optical path folding method. Therefore, for the problem that it was difficult to establish the detection reference of the length of more than 50 m, a new rangefinder detection method tracing back to the total station was proposed. A highly operable detection device was designed to carry out the detection experiment of the hand-held laser rangefinder signaling error in the measurement section of 50 m-200 m. The experiments showed that the uncertainty of the range detection method based on the common optical path was 1.6 mm at 200 m, which met the requirements of JJG 966-2010 calibration specification for handheld laser rangefinders. Finally, the reliability of the measurement capability of the detection method was verified by comparison experiments. The research method is the first one in China to extend the measurement range of the measurement standard "Handheld Laser Rangefinder Calibration Device" from 50 m to 200 m under the condition of no baseline field, which has outstanding value of popularization and application.
  • loading
  • [1]
    李建双, 缪东晶, 刘洋, 等. 大尺寸先进计量技术研究与进展概述[J]. 计量科学与技术, 2024, 68(2): 30-39.
    [2]
    孙安斌, 曹铁泽, 王继虎, 等. 高端装备大型零部件几何尺寸测量技术现状及趋势[J]. 计测技术, 2021, 41(2): 41-50.
    [3]
    曲兴华, 戴建芳, 张福民. 基于激光测距的大尺寸测量应用研究[J]. 仪器仪表学报, 2009, 30(3): 481-485.
    [4]
    Zhou G F, Li X X, Li D S, et al. Large - scale compact range on - site alignment based on laser tracker measurement network[J]. Measurement, 2015, 68: 143-154. doi: 10.1016/j.measurement.2015.02.036
    [5]
    林燮佳. 手持式激光测距仪校准装置及方法的研究[J]. 计量与测试技术, 2022, 49(7): 101-105.
    [6]
    付永杰, 周明磊. 激光测距仪校准技术研究[J]. 计量与测试技术, 2023, 50(7): 72-74,78.
    [7]
    邓向瑞, 梁宝敏, 肖华杰, 等. 温度代表性误差对基线测距的影响[J]. 计量科学与技术, 2020(12): 7-11.
    [8]
    霍立业, 秦显平. 标准基线的测量原理及其精度分析[J]. 测绘技术装备, 2006(1): 5-7.
    [9]
    张超, 郭赞峰. 基线测量在长度量值溯源中的应用与创新[J]. 中国计量, 2023(11): 79-81.
    [10]
    Li P, He M Z, Li J S, et al. Calibration technology of length measurement accuracy of total station in automatic air refractive index compensation system[C]. International Symposium on Precision Mechanical Measurements, Chongqing, 2019.
    [11]
    刘学德, 缪东晶, 张京燕, 等. 1.2 km标准基线环境参数自动测量系统研制[J]. 计量学报, 2020, 41(8): 897-902.
    [12]
    桑金. 我国野外基线若干问题的研究[J]. 测绘通报, 2012(3): 48-52.
    [13]
    王剑, 杨胜万, 孟小芳. 建立室内基线可行性的分析研究[J]. 现代测绘, 2016, 39(3): 34-36.
    [14]
    刘红光, 李青, 李凌梅, 等. 基于误差相消原理的光程倍增测量方法[J]. 计量学报, 2019, 40(5): 776-779.
    [15]
    Forde Lucy C, Howick Eleanor F. Extension of traceable calibration for electronic distance measuring instruments beyond the length of the laboratory[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5190: 289-299.
    [16]
    黄稣. 建立室内虚拟长度基线场的可行性探讨[J]. 计测技术, 2006(4): 22-25.
    [17]
    潘嘉声, 黄稣, 张勇. 室内虚拟直线基线的研究[J]. 计量学报, 2015, 36(1): 19-21.
    [18]
    杨维芳. 光电测距仪室内长基线建立方法研究[D]. 北京: 中国地震局地球物理研究所, 2009.
    [19]
    He S X, Zhong S D, Yu M Z. Theory and practice of establishing optical fiber baseline field[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2000, 4223: 228-230.
    [20]
    杨潘, 李新碗, 李中方, 等. 基于标准光纤的全站仪测距室内检定[J]. 电子技术, 2011, 38(2): 4-5.
    [21]
    史洁琴, 何珂, 徐永. 光纤基线标定激光测距仪方法研究[J]. 南京航空航天大学学报, 2012, 44(6): 830-834.
    [22]
    徐向奎, 王俊, 顾楷. 手持式激光测距仪室内自动检定装置的研究[J]. 工业计量, 2020, 30(3): 42-44.
    [23]
    王龙来. 一种新型手持式激光测距仪检测装置的研制[J]. 中国计量, 2016(10): 71-74.
    [24]
    蔡青梅. 室内虚拟长度基线场的建立方法研究[D]. 天津: 天津大学, 2021
    [25]
    卞伟, 李厚裔, 赵炎, 等. 手持式激光测距仪各基准面测量一致性调整装置的设计[J]. 工业计量, 2022, 32(2): 28-30.
    [26]
    刘红光, 蔡青梅, 李青, 等. 室内200 m虚拟基线测量方法的研究[J]. 计量学报, 2021, 42(11): 1425-1429.
    [27]
    国家质量监督检验检疫总局. 手持式激光测距仪检定规程: JJG 966-2010 [S]. 北京: 中国计量出版社, 2010.
    [28]
    王树刚, 李惠. 一种基于室内手持式激光测距仪校准装置的研制[J]. 计量科学与技术, 2021, 65(10): 63-66.
    [29]
    王俊. 手持式激光测距仪示值误差扩展不确定度的评定[J]. 工业计量, 2012, 22(3): 36-38.
    [30]
    刘红光, 李凌梅, 崔尧尧, 等. 手持式激光测距仪示值误差测量结果不确定度的研究[J]. 测控技术, 2018, 37(12): 82-84.
    [31]
    李一鸣. 手持式激光测距仪自动检定关键技术研究[D]. 天津: 天津大学, 2018.
    [32]
    卞伟, 郝彦彬, 谢平, 等. 一种新型手持式激光测距仪示值误差的检定方法[J]. 上海计量测试, 2020, 47(3): 5-7. doi: 10.3969/j.issn.1673-2235.2020.03.004
    [33]
    乔卫东, 赵敏, 刘康, 等. 手持式激光测距仪检定方法及系统研究[J]. 计量学报, 2016, 37(1): 15-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (70) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return