Turn off MathJax
Article Contents
MA Kun, YANG Yuanchao, FENG Xiaojuan. Research Progress in Optical Quantum Pressure Standards[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0113
Citation: MA Kun, YANG Yuanchao, FENG Xiaojuan. Research Progress in Optical Quantum Pressure Standards[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0113

Research Progress in Optical Quantum Pressure Standards

doi: 10.12338/j.issn.2096-9015.2024.0113
  • Received Date: 2024-04-07
  • Accepted Date: 2024-04-17
  • Rev Recd Date: 2024-08-02
  • Available Online: 2024-08-09
  • Optical quantum pressure standards offer significant advantages in primary measurement, including extremely high resolution, inherent accuracy, and independence from physical artifacts. These characteristics make them the preferred direction for developing next-generation pressure measurement benchmarks. Numerous metrology research institutions and universities worldwide have conducted relevant studies in this field. This paper introduces the working principle of optical quantum pressure measurement based on Fabry-Pérot cavities. It provides a comprehensive review of the current research status in optical quantum pressure standards both domestically and internationally. The article also recounts the work conducted by the National Institute of Metrology of China to enhance the performance of optical quantum pressure standard devices. This includes research progress in suppressing vacuum outgassing effects, eliminating zero-point errors, and independently determining correction factors. Furthermore, the paper discusses future research priorities and development trends for optical quantum pressure standards.
  • loading
  • [1]
    Yang Y C, Yue J. Calculation of Effective Area for the NIM Primary Pressure Standards[J]. PTB Mitteilungen, 2011, 121(3): 266-269.
    [2]
    Sharipov F, Yang Y C, Ricker J E, et al. Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross sectional area based on rarefied gas dynamics[J]. Metrologia, 2016, 53: 1177-1184. doi: 10.1088/0026-1394/53/5/1177
    [3]
    王博文, 马坤, 董嘉, 等. 基于有限元分析的活塞压力计形变系数理论计算[J/OL]. 计量学报. http://kns.cnki.net/kcms/detail/11.1864.TB.20240226.1123.006.html.
    [4]
    Milton M J T, Davis R, Fletcher N. Towards a new SI: a review of progress made since 2011[J]. Metrologia, 2014, 51: R21-R30. doi: 10.1088/0026-1394/51/3/R21
    [5]
    Egan P F, Stone J A, Hendricks J H, et al. Performance of a dual Fabry-Perot cavity refractometer[J]. Opt Lett, 2015, 40(17): 3945-3948. doi: 10.1364/OL.40.003945
    [6]
    Hendricks J. Quantum for pressure[J]. Nature Physics, 2018, 14(1): 100. doi: 10.1038/nphys4338
    [7]
    Jousten K. A unit for nothing[J]. Nature Physics, 2019, 15: 618. doi: 10.1038/s41567-019-0530-8
    [8]
    Gibney E. Pressure gets an upgrade[J]. Nature, 2019, 570: 424-425. doi: 10.1038/d41586-019-01950-9
    [9]
    Egan P, Stone J A. Absolute refractometry of dry gas to ±3 parts in 109[J]. Applied optics, 2011, 50(19): 3076-3086. doi: 10.1364/AO.50.003076
    [10]
    Ricker J , Hendricks J , Egan P , et al. Towards Photonic based Pascal Realization as a Primary Pressure Standard[J]. Journal of Physics Conference Series, 2018, 1065: 162018.
    [11]
    Jousten K, Hendricks J, Barker D, et al. Perspectives for a new realization of the pascal by optical methods[J]. Metrologia, 2017, 54(6): S146-S161. doi: 10.1088/1681-7575/aa8a4d
    [12]
    Egan P F, Stone J A, Ricker J E, et al. Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer[J]. The Review of scientific instruments, 2016, 87(5): 053113. doi: 10.1063/1.4949504
    [13]
    Isak S, Thomas H, Martin Z, et al. Gas modulation refractometry for high-precision assessment of pressure under non-temperature-stabilized conditions[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2018, 36(3): 03E105.
    [14]
    Silander I, Forssén C, Zakrisson J, et al. Optical realization of the pascal—Characterization of two gas modulated refractometers[J]. Journal of Vacuum Science & Technology B, 2021, 39(4): 044201.
    [15]
    Silvestri Z, Bentouati D, Otal P, et al. Towards an improved helium-based refractometer for pressure measurements[C]. Acta IMEKO, 2020, 9(5): 305-309.
    [16]
    Takei Y, Arai K, Yoshida H, et al. Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range[J]. Measurement, 2020, 151: 107090. doi: 10.1016/j.measurement.2019.107090
    [17]
    Yang Y C, Rubin T, Sun J P. Characterization of a vacuum pressure standard based on optical refractometry using nitrogen developed at nim[J]. Vacuum, 2021, 194: 110598. doi: 10.1016/j.vacuum.2021.110598
    [18]
    许玉蓉, 刘洋洋, 王进, 等. 基于气体折射率方法的真空计量[J]. 物理学报, 2020, 69: 150601. doi: 10.7498/aps.69.20200706
    [19]
    刘洋洋, 胡常乐, 孙羽, 等. 双腔比对折射率法测定气体压力[J]. 物理学报, 2022, 71(8): 55-60.
    [20]
    聂中梁, 王新广, 王进, 等. 光学压力计的标定及应用[J/OL]. 真空与低温. http://kns.cnki.net/kcms/detail/62.1125.O4.20240219.1508.002.html.
    [21]
    范栋, 习振华, 贾文杰, 等. 量子真空计量标准中的非极性稀薄气体折射率测量研究[J]. 物理学报, 2021, 70(4): 144-152.
    [22]
    Yang Y C, Ma K, Rubin Tom, et al. ANALYSIS OF THE OUTGASSING IN AN OPTICAL PRESSURE STANDARD[C]. IMEKO 24thTC3, 14thTC5, 6thTC16 and 5thTC22 International Conference, 2022.
    [23]
    Ma K, Yang Y C, Feng X J. Low-pressure performance of a Fabry–Pérot cavity based optical pressure standard working at the zero-thermal-expansion temperature[J]. Vacuum Volume, 2024, 221: 112861. doi: 10.1016/j.vacuum.2023.112861
    [24]
    Yang Y C, Egan P F, Rubin T. Working equation for a fabry-perot cavity based optical pressure standard[C]. 2023 CCM & IMEKO International Conference on Pressure and Vacuum Metrology, 2023.
    [25]
    Durand M, Wang Y, Lawall J. Accurate Gouy phase measurement in an astigmatic optical cavity[J]. Applied Physics B, 2012, 108: 749-753. doi: 10.1007/s00340-012-5147-x
    [26]
    Silander I, Zakrisson J, Silva de Oliveira V, et al. In situ determination of the penetration depth of mirrors in Fabry-Perot refractometers and its influence on assessment of refractivity and pressure[J]. Opt Express, 2022, 30: 1. doi: 10.1364/OE.439226
    [27]
    Yang Y C, Rubin T. Simulation of pressure induced length change of an optical cavity used for optical pressure standard[C]. Journal of Physics: Conference Series, 2018.
    [28]
    Egan P F, Stone J A, Scherschligt J K, et al. Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry[J]. Journal of Vacuum Science & Technology A, 2019, 37: 031603.
    [29]
    Egan P F, Yang Y C. Optical n(p, T90) Measurement Suite 1: He, Ar, and N2, Int. J[J]. Theosophy’s, 2023, 44: 1.
    [30]
    Lesiuk M, Jeziorski B. First-principles calculation of the frequency-dependent dipole polarizability of argon[J]. Physical Review A, 2023, 107: 042805. doi: 10.1103/PhysRevA.107.042805
    [31]
    Shaul K R S, Schultz A J, Kofke D A, et al. Semiclassical fifth virial coefficients for improved ab initio helium-4 standards[J]. Chemical Physics Letters, 2012, 531: 11-17. doi: 10.1016/j.cplett.2012.02.013
    [32]
    Puchalski M, Piszczatowski K, Komasa J, et al. Theoretical determination of the polarizability dispersion and the refractive index of helium[J]. Physical Review A, 2016, 93(3): 032515. doi: 10.1103/PhysRevA.93.032515
    [33]
    Rourke P M C. Perspective on the Refractive-Index Gas Metrology Data Landscape[J]. Journal of Physical and Chemical Reference Data, 2021, 50: 033104. doi: 10.1063/5.0055412
    [34]
    Garberoglio G, Gaiser C, Gavioso R. M, et al. Ab Initio Calculation of Fluid Properties for Precision Metrology[C]. Journal of Physical and Chemical Reference Data, 2023.
    [35]
    Puchalski M, Lesiuk M, Jeziorski B. Relativistic treatment of the diamagnetic susceptibility of helium[J]. Physical Review A, 2023, 108: 042812. doi: 10.1103/PhysRevA.108.042812
    [36]
    Zakrisson J, Silander I, Forssén C, et al. Procedure for robust assessment of cavity deformation in Fabry-Pérot based refractometers[J]. Journal of Vacuum Science & Technology B, 2020, 38: 054202.
    [37]
    Ricker J, Douglass K O, Hendricks J, et al. Determination of distortion corrections for a fixed length optical cavity pressure standard[J]. Measurement: Sensors, 2021, 18: 1.
    [38]
    Avdiaj S, Yang Y C, Jousten K, et al. Note: Diffusion constant and solubility of helium in ULE glass at 23 °C[J]. The Journal of Chemical Physics, 2018, 148(11): 116101. doi: 10.1063/1.5019015
    [39]
    Takei Y, Telada S, Yoshida H, et al. Challenges of an optical pressure standard in medium vacuum measurements[J]. Measurement: Sensors, 2022, 22: 100371. doi: 10.1016/j.measen.2022.100371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (72) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return